Simplifying Test Prep

Chapter - 13
 Nuclei
 Class - XII
 Subject - Physics

13.1. (a) Two stable isotopes of lithium 63 Li and 73 Li have respective abundances of 7.5% and 92.5%. These isotopes have masses 6.01512 u and 7.01600 u , respectively. Find the atomic mass of lithium.
(b) Boron has two stable isotopes, 10 5B and 11 5B. Their respective masses are 10.01294 u and 11.00931 u , and the atomic mass of boron is 10.811 u . Find the abundances of 10 5B and 115 B.

Sol.
(a) Given:

Abundance of 3Li6 = 7.5\%
Abundance of 3Li7 $=92.5 \%$
Mass of $3 \mathrm{Li6}=6.01512 \mathrm{u}$
Mass of $3 \mathrm{Li} 7=7.016 \mathrm{u}$

The atomic mass of lithium will depend on the atomic masses of these two isotopes with their abundances as given. This can be calculated by finding the weighted average of the two, as done below

Atomic mass of Li

$$
\begin{aligned}
& =(6.01512 \times 7.5+7.016 \times 92.5) / 100 \\
& =6.940934 u
\end{aligned}
$$

Simplifying Test Prep

$$
=6.941 \mathrm{u}
$$

(b) Given:

Mass of $5 \mathrm{~B} 10=10.01294 \mathrm{u}$
Mass of $5 \mathrm{~B} 11=11.00931 \mathrm{u}$
Atomic mass of $\mathrm{B}=10.811 \mathrm{u}$

The abundances of 5B10 and 5B11 can be calculated by using the technique employed in solution of part (a) of this question.

Let the abundance of 5B10 be y\%
Then, the abundance of $5 \mathrm{~B} 11=(100-\mathrm{y}) \%$
Now calculating weighted average

Atomic mass of boron $=[10.01294 y+11.00931(100-y)] / 100$
Or

$$
1081.1=10.01294 y+1100.931-11.00931 y
$$

Simplifying this linear eq. and solving further

$$
0.99636 y=19.831
$$

which gives

$$
\begin{aligned}
y & =19.9 \% \\
100-y & =80.1 \%
\end{aligned}
$$

Thus, abundance of $5 \mathrm{~B} 10=19.9 \%$
And, abundance of 5B11 = 80.1\%
13.2. The three stable isotopes of neon: $10 \mathrm{Ne} 20,10 \mathrm{Ne} 21$ and 10 Ne 22 have respective abundances of $90.51 \%, 0.27 \%$ and 9.22%. The atomic masses of the three isotopes are $19.99 \mathrm{u}, 20.99 \mathrm{u}$ and 21.99 u , respectively. Obtain the

Simplifying Test Prep
average atomic mass of neon.

Sol.

Given:
Respective masses and abundances of three isotopes of neon.

Average atomic mass of Ne

$$
=\frac{19.99 \times 90.51+20.99 \times 0.27+21.99 \times 9.22}{100}
$$

$=20.1771 \mathbf{u}$
13.3. Obtain the binding energy (in MeV) of a nitrogen nucleus (14)7N, given $\mathrm{m}(14) 7 \mathrm{~N}=14.00307 \mathrm{u}$

Sol.

Binding energy of $7 \mathrm{~N} 14=\Delta \mathrm{Mc}^{2}$
Mass defect $=[$ mass of 7 protons + mass of 7 neutrons $-\operatorname{actual}$ mass of N$]$

$$
=[14.11543-14.00307]
$$

$$
=0.11236 \mathrm{u}
$$

Binding energy $=0.11236 \mathrm{u} \times 931.5 \mathrm{MeV} / \mathrm{u}$

$$
=104.66 \mathrm{MeV}
$$

Simplifying Test Prep
13.4. Obtain the binding energy of the nuclei 5626 Fe and 20983 Bi in units of MeV from the following data:
$\mathrm{m}(5626 \mathrm{Fe})=55.934939 \mathrm{u}$
$\mathrm{m}(20983 \mathrm{Bi})=208.980388 \mathrm{u}$

Sol.

Mass defect of $\mathrm{Fe}=$ Theoretical value - Practical value
Solving as per previous question
Mass defect of $\mathrm{Fe}=0.528461 \mathrm{u}$
BE of $\mathrm{Fe}=0.528461 \times 931.5$

$$
=492.26 \mathrm{MeV}
$$

BE per nucleon of $\mathrm{Fe}=492.26 / 56$

$$
=8.97 \mathrm{MeV}
$$

Similarly,
Mass defect of $\mathrm{Bi}=1.760877 \mathrm{u}$
BE of $\mathrm{Bi}=1640.257 \mathrm{MeV}$
BE per nucleon of $\mathrm{Bi}=1640.257 / 209$
$=7.84 \mathrm{MeV}$
13.5. A given coin has a mass of 3.0 g . Calculate the nuclear energy that would be required to separate all the neutrons and protons from each other. For simplicity assume that the coin is entirely made of 6329 Cu atoms (of mass 62.92960 u).

Sol.

Simplifying Test Prep
Given:
Mass of coin $=0.003 \mathrm{~kg}$
Mass of 29Cu63 $=62.9296 u$

$$
=1.045261 \times 10^{-25} \mathrm{~kg}
$$

No. of Cu atoms in given sample

$$
\begin{aligned}
\mathrm{D} & =0.003 / 1.045261 \times 10^{-25} \\
& =2.8701 \times 10^{22} \text { atoms }
\end{aligned}
$$

Mass defect of 1 Cu atom $=0.591935$

BE of 1 Cu atom $=0.591935 \times 931.5=551.387 \mathrm{MeV}$
So,
BE of D atoms $=2.8701 \times 10^{22} \times 551.387$

$$
\begin{aligned}
& =1.583 \times 10^{25} \mathrm{MeV} \\
& =2.53 \times 10^{12} \mathrm{~J}
\end{aligned}
$$

13.6. Write nuclear reaction equations for
(i) α-decay of 22688 Ra
(ii) α-decay of 24294 Pu
(iii) β--decay of 3215 P
(iv) β--decay of 21083 Bi
(v) $\beta+$-decay of 116 C
(vi) $\beta+$-decay of 9743 Tc
(vii) Electron capture of 12054 Xe

Sol.
(i) α-decay of 22688 Ra

$$
{ }_{88} \mathrm{Ra}^{226} \rightarrow{ }_{86} \mathrm{Rn}^{222}+{ }_{2} \mathrm{He}^{4}
$$

(ii) α-decay of 24294 Pu

$$
{ }_{94} \mathrm{Pu}^{242} \rightarrow{ }_{92} \mathrm{U}^{238}+{ }_{2} \mathrm{He}^{4}
$$

(iii) β^{-}-decay of 3215 P

$$
{ }_{15} \mathrm{P}^{32} \rightarrow{ }_{16} \mathrm{~S}^{32}+\mathrm{e}^{-}+v
$$

(iv) β^{-}-decay of 21083 Bi

$$
{ }_{83} \mathrm{Bi}^{210} \rightarrow{ }_{84} \mathrm{Po}^{210}+\mathrm{e}^{-}+v
$$

(v) β^{+}-decay of 116 C

$$
{ }_{6} \mathrm{C}^{11} \rightarrow{ }_{5} \mathrm{~B}^{11}+\mathrm{e}^{+}+\mathrm{v}
$$

(vi) β^{+}-decay of 9743 Tc

$$
{ }_{43} \mathrm{Tc}^{97} \rightarrow{ }_{42} \mathrm{Mo}^{97}+\mathrm{e}^{+}+\mathrm{v}
$$

(vii) Electron capture of 12054 Xe

$$
{ }_{54} \mathrm{Xe}^{120}+\mathrm{e}^{-} \rightarrow{ }_{53} \mathrm{I}^{120}+\mathrm{v}
$$

13.7. A radioactive isotope has a half-life of T years. How long will it take the activity to reduce to
a) 3.125%,
b) 1% of its original value?

Sol.

Given:
$\mathrm{T}_{1 / 2}=\mathrm{T}$ years
$\lambda=0.693 / T$
(a) $\mathrm{N}=0.03125$

$$
\mathrm{N}_{\mathrm{o}}=1
$$

Using the expression

$$
\ln N-\ln N_{o}=-\lambda t
$$

Substituting values and solving

$$
-3.466=[-0.693 / T] . \mathrm{t}
$$

Or $\mathbf{t}=\mathbf{5 T}$ years
(b) $\mathrm{N}=0.01$
$\mathrm{N}_{\mathrm{o}}=1$
Similarly
$\ln \mathrm{N}-\ln \mathrm{N}_{\mathrm{o}}=-\lambda \mathrm{t}$
Substituting values and solving
$t=6.65 \mathrm{~T}$ years
13.8. The normal activity of living carbon-containing matter is found to be about 15 decays per minute for every gram of carbon. This activity arises from the small proportion of radioactive 146 C present with the stable carbon isotope 126 C . When the organism is dead, its interaction with the atmosphere (which maintains the above equilibrium activity) ceases and its activity begins to drop. From the known half-life (5730 years) of 146 C , and the measured activity, the age of the specimen can be approximately estimated. This is the principle of 146 C dating used in archaeology. Suppose a specimen from Mohenjodaro gives an activity of 9 decays per minute per gram of carbon. Estimate the approximate age of the Indus-Valley civilisation.

Sol.

Given:
Initial Normal activity $\mathrm{R}=15$ decays $/$ minute

$$
=0.25 \text { decay } / \mathrm{s}
$$

$\mathrm{T}-1 / 2=5730$ years

$$
=1.807 \times 10^{11} \mathrm{~s}
$$

Therefore
Disintegration constant

$$
\lambda=0.693 / \mathrm{T}-1 / 2
$$

Simplifying Test Prep

$$
\begin{aligned}
& =0.693 / 1.807 \times 10^{11} \\
& =3.835 \times 10^{-12}
\end{aligned}
$$

Initial N_{o}

$$
\mathrm{R}=\lambda \mathrm{N}_{\mathrm{o}}
$$

Or

$$
\begin{aligned}
\mathrm{N}_{\mathrm{o}} & =0.25 / \lambda \\
& =6.52 \times 10^{10} \text { atoms }
\end{aligned}
$$

Specimen activity R' $=9$ decays $/$ minute

$$
=0.15 \text { decay } / \mathrm{s}
$$

Therefore N of specimen

Or

$$
\mathrm{R}^{\prime}=\lambda \mathrm{N}
$$

$$
\begin{aligned}
\mathrm{N} & =0.15 / 3.835 \times 10^{-12} \\
& =3.91 \times 10^{10} \text { atoms }
\end{aligned}
$$

By law of radioactive decay

$$
\ln \mathrm{N}-\ln \mathrm{N}_{\mathrm{o}}=-\lambda \mathrm{t}
$$

Or

$$
\begin{aligned}
\mathrm{t} & =(24.39-24.9) /\left(-3.835 \times 10^{-12}\right) \\
& =1.332 \times 10^{11} \mathrm{~s} \\
& =4224 \text { years }
\end{aligned}
$$

Thus the approximate age of Indus-Valley Civilization from the given sample is $\mathbf{4 2 2 4}$ years.
13.9. Obtain the amount of 60 27Co necessary to provide a radioactive source of 8.0 mCi strength. The half-life of 6027 Co is 5.3 years.

Simplifying Test Prep

Sol.

Given:
$\mathrm{R}=296000000 \mathrm{~Bq}$
$\mathrm{T}-1 / 2=167162000 \mathrm{~s}$
$\lambda=0.693 / \mathrm{T}-1 / 2$
$=4.146 \times 10^{-9}$

Therefore $\mathrm{N}=\mathrm{R} / \lambda=7.14 \times 10^{16}$ atoms
Now
1 g of 27Co60 contains

$$
\begin{aligned}
& =\left[6.025 \times 10^{23}\right] / 60 \\
& =1.0037 \times 10^{22} \text { atoms }
\end{aligned}
$$

Hence
7.14×10^{16} atoms will be in

$$
\begin{aligned}
& =\left[7.14 \times 10^{16}\right] /\left[1.0037 \times 10^{22}\right] \\
& =\mathbf{7 . 1 2 6} \times 10^{-6} \mathbf{g}
\end{aligned}
$$

13.10.The half-life of 9038 Sr is 28 years. What is the disintegration rate of 15 mg of this isotope?

Sol.

Disintegration rate, $\mathrm{R}=\lambda \mathrm{N}$

Simplifying Test Prep

$$
\begin{aligned}
\lambda & =0.693 / \mathrm{T}-1 / 2 \\
& =7.85 \times 10^{-10}
\end{aligned}
$$

15 g of Sr has

$$
\begin{aligned}
\mathrm{N} & =\text { Avogadro's No. } / 90 \\
& =10^{20} \text { atoms }
\end{aligned}
$$

Therefore $\mathrm{R}=\left(7.85 \times 10^{-10}\right) \times\left(10^{20}\right)$

$$
\begin{aligned}
& =7.879 \times 10^{10} \mathrm{~Bq} \\
& =2.13 \mathrm{Ci}
\end{aligned}
$$

13.11. Obtain approximately the ratio of the nuclear radii of the gold isotope 197 79 Au and the silver isotope 10747 Ag .

Sol.

Required ratio $=$ Radius of Au isotope $/$ Radius of Ag isotope

$$
=\frac{R_{0} \sqrt[3]{197}}{R_{0} \sqrt[3]{107}}
$$

$$
\begin{aligned}
& =\frac{5.819}{4.747} \\
& =\mathbf{1 . 2 3}
\end{aligned}
$$

13.12. Find the Q-value and the kinetic energy of the emitted α-particle in the α decay of

Simplifying Test Prep
(a) 22688 Ra and
(b) 22086 Rn

Given $m(22688 \mathrm{Ra})=226.02540 \mathrm{u}, \mathrm{m}(22286 \mathrm{Rn})=222.01750 \mathrm{u}$, $\mathrm{m}(22286 \mathrm{Rn})=220.01137 \mathrm{u}, \mathrm{m}(21684 \mathrm{Po})=216.00189 \mathrm{u}$.

Sol.
(a) Nuclear reaction:

$$
\begin{aligned}
& 88 \mathrm{Ra} 226 \rightarrow 86 \mathrm{Rn} 222+2 \mathrm{He} 4 \\
\mathrm{Q}= & \left(\mathrm{M}_{\mathrm{Ra}}-\mathrm{M}_{\mathrm{Rn}}-\mathrm{M}_{\mathrm{He}}\right) \cdot \mathrm{c}^{2} \\
= & \left(5.297 \times 10^{-3}\right) \cdot(931.5) \\
= & \mathbf{4 . 9 3 4} \mathbf{~ M e V}
\end{aligned}
$$

Kinetic energy of emitted alpha particle:
The energy liberated in the nuclear reaction displays in the form of kinetic energy of the particles of products.

Kinetic energy of products

$$
\begin{equation*}
\left(\mathrm{MV}^{2} / 2\right)+\left(\mathrm{mv}^{2} / 2\right)=4.93 \mathrm{MeV} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{M}=\text { mass of radon nuclei } \\
& \mathrm{m}=\text { mass of helium nuclei } \\
& \mathrm{V}=\text { velocity of radon nuclei } \\
& \mathrm{v}=\text { velocity of helium nuclei }
\end{aligned}
$$

To keep the momentum conserve

$$
\mathrm{MV}=\mathrm{mv}
$$

Or

Simplifying Test Prep

$$
\begin{equation*}
\mathrm{M} / \mathrm{m}=\mathrm{v} / \mathrm{V} \tag{2}
\end{equation*}
$$

This implies nothing but the simple fact that the most of the kinetic energy (or Q calculated above) will be retained by the helium nuclei, eq. pointing that it will travel with much large velocity as compared to the velocity of the radon nuclei.
Dividing eq. (1) throughout by V^{2} and making substitutions from eq. (2)
$\left(\mathrm{M}^{2} / \mathrm{m}\right)+\mathrm{M}=9.86 / \mathrm{V}^{2}$
Or

$$
\mathrm{V}^{2}=7.86 \times 10^{-4}
$$

KE of $\mathrm{Rn}=\mathrm{MV}^{2} / 2=0.087 \mathrm{MeV}$
therefore
KE of alpha particle $=4.93-0.087$
$=4.85 \mathrm{MeV}$
(b) Nuclear reaction:

$$
86 \mathrm{Rn} 220 \rightarrow 84 \mathrm{Po} 216+2 \mathrm{He} 4
$$

Calculating Q in a similar fashion

$$
\mathrm{Q}=6.41 \mathrm{MeV}
$$

Kinetic energy of emitted alpha particle:
As solved in part (a) of this question

KE of products

$$
[(\mathrm{MV}) \mathrm{V} / 2]+[(\mathrm{mv}) \mathrm{v} / 2]=6.41
$$

where
$\mathrm{M}=$ mass of polonium nuclei
$\mathrm{m}=$ mass of helium nuclei

Simplifying Test Prep
$\mathrm{V}=$ velocity of polonium nuclei
$v=$ velocity of helium nuclei

By the same arguments and solving technique used in part (a) of this question, V comes to be

$$
\mathrm{V}=0.033
$$

KE of $\mathrm{Po}=\mathrm{MV}^{2} / 2$

$$
=0.117 \mathrm{MeV}
$$

Therefore KE of alpha particle

$$
\begin{aligned}
& =6.41-0.117 \\
& =6.29 \mathrm{MeV}
\end{aligned}
$$

13.13. The radionuclide 11 C decays according to
$11+6 \mathrm{C} \rightarrow 5 \mathrm{~B}+\mathrm{e}+v: \mathrm{T} 1 / 2=20.3 \mathrm{~min}$
The maximum energy of the emitted positron is 0.960 MeV . Given the mass values:
$\mathrm{m}(116 \mathrm{C})=11.011434 \mathrm{u}$ and $\mathrm{m}(116 \mathrm{~B})=11.009305 \mathrm{u}$, calculate Q and compare it with the maximum energy of the positron emitted.

Sol.

Nuclear Reaction:
$6 \mathrm{C} 11 \rightarrow 5 \mathrm{~B} 11+\mathrm{e}^{+} \mathrm{v}+\mathrm{Q}$
$\mathrm{Q}=$ [mass of $\mathrm{C}-$ mass of $\mathrm{B}-$ mass of electron - mass of electron] .c.c

Simplifying Test Prep

$$
=0.961 \mathrm{MeV}
$$

This Q has energy distributed as

$$
\mathrm{Q}=\mathrm{Ed}+\mathrm{Ee}+\mathrm{Ev}
$$

For constant momentum, the energy carried by daughter nuclei and neutrino is nearly zero. The positron carries maximum energy.
Hence $\max \mathrm{Ee} \approx \mathrm{Q}$.
13.14. The nucleus 2310 Ne decays by β - emission. Write down the β-decay equation and determine the maximum kinetic energy of the electrons emitted. Given that:
$\mathrm{m}(2310 \mathrm{Ne})=22.994466 \mathrm{u}$
$\mathrm{m}(2311 \mathrm{Na})=22.089770 \mathrm{u}$.

Sol.

Nuclear Reaction:

$$
10 \mathrm{Ne} 23 \rightarrow 11 \mathrm{Na} 23+\mathrm{e}^{-}+\pi 2+\mathrm{Q}
$$

$\mathrm{Q}=$ [mass of $\mathrm{Ne}-$ mass of Na - mass of electron].c.c
Using atomic masses

$$
\begin{aligned}
\mathrm{Q} & =\text { [mass of } \mathrm{Ne}-\text { mass of } \mathrm{Ma}] . \mathrm{c} . \mathrm{c} \\
& =4.37 \mathrm{MeV}
\end{aligned}
$$

For the reasons argued in previous questions, the maximum kinetic energy

Simplifying Test Prep
of electron
Maximum $E \mathrm{Ee}=\mathrm{Q}=4.37 \mathrm{MeV}$
13.15. The Q value of a nuclear reaction $A+b \rightarrow C+d$ is defined by $\mathrm{Q}=[\mathrm{mA}+\mathrm{mb}-\mathrm{mC}-\mathrm{md}] \mathrm{c} 2$ where the masses refer to the respective nuclei. Determine from the given data the Q -value of the following reactions and state whether the reactions are exothermic or endothermic.
(i) $1 \mathrm{H} 1+1 \mathrm{H} 3 \rightarrow 1 \mathrm{H} 2+1 \mathrm{H} 2$
(ii) $6 \mathrm{C} 12+6 \mathrm{Cl2} \rightarrow 10 \mathrm{Ne} 20+2 \mathrm{He} 4$

Atomic masses are given to be
$\mathrm{m}(2 \mathrm{H})=2.014102 \mathrm{u}$
$\mathrm{m}(3 \mathrm{H})=3.016049 \mathrm{u}$
$\mathrm{m}(126 \mathrm{C})=12.000000 \mathrm{u}$
$m(2010 \mathrm{Ne})=19.992439 \mathrm{u}$

Sol.
$\mathrm{A}+\mathrm{b} \rightarrow \mathrm{C}+\mathrm{d}$
$\mathrm{Q}=$ [mass of $\mathrm{A}+$ mass of $\mathrm{b}-$ mass of $\mathrm{C}-$ mass of d$] . \mathrm{c} . \mathrm{c}$
(i) Nuclear Reaction:
$1 \mathrm{H1}+1 \mathrm{H} 3 \rightarrow 1 \mathrm{H} 2+1 \mathrm{H} 2$

$$
\begin{aligned}
\mathrm{Q} & =[-4.33 \mathrm{X} \mathrm{10-3].[931.5]} \\
& =-4.03 \mathbf{~ M e V}
\end{aligned}
$$

Reaction is endothermic. This much energy has to be supplied.
(ii) Nuclear Reaction:
$6 \mathrm{C} 12+6 \mathrm{C} 12 \rightarrow 10 \mathrm{Ne} 20+2 \mathrm{He} 4$
$\mathrm{Q}=[4.958 \times 10-3] .[931.5]$
$=4.62 \mathrm{MeV}$

Positive sign indicates the reaction is exothermic.
13.16. Suppose, we think of fission of a 5626 Fe nucleus into two equal fragments, 2813 Al . Is the fission energetically possible? Argue by working out Q of the process. Given $\mathrm{m}(5626 \mathrm{Fe})=55.93494 \mathrm{u}$ and $\mathrm{m}(2813 \mathrm{Al})=$ 27.98191 u.

Sol.

Nuclear Reaction:
$26 \mathrm{Fe} 56 \rightarrow 13 \mathrm{Al} 28+13 \mathrm{Al} 28+\mathrm{Q}$
$\mathrm{Q}=$ [mass of $\mathrm{Fe}-$ mass of aluminium - mass of aluminium $] . c . c$
$=[-0.0288] .[931.5]$
$=-26.9 \mathrm{MeV}$
The reaction being endothermic is not possible.
13.17. The fission properties of 23994 Pu are very similar to those of 23592 U . The average energy released per fission is 180 MeV . How much energy, in MeV , is released if all the atoms in 1 kg of pure 23994 Pu undergo fission?

Get SOLVED Question Papers, Updated Syllabus, Sample Papers, Practice Papers, Study

Sol.

Given:
Energy released per fission $=180 \mathrm{MeV}$

1 g of Pu contains
= Avogadro's No. / 239

1 kg of Pu contains

$$
\mathrm{N}=2.5197 \times 10^{24} \text { atoms }
$$

1 atom releases $=180 \mathrm{MeV}$
Therefore,
N atoms release $=4.536 \times 10^{26} \mathrm{MeV}$
13.18. A 1000 MW fission reactor consumes half of its fuel in 5.00 y . How much 23592 U did it contain initially? Assume that the reactor operates 80% of the time, that all the energy generated arises from the fission of 23592 U and that this nuclide is consumed only by the fission process.

Sol.

Energy generated per gram of U

$$
=\left(6 \times 10^{23} \times 200 \times 1.6 \times 10^{-13}\right) / 235
$$

the amount of U consumed in 5 years with 80% on-time

Simplifying Test Prep

$$
\begin{aligned}
& =\left(5 \times 0.8 \times 3.154 \times 10^{16} \times 235\right) /\left(1.2 \times 1.6 \times 10^{13}\right) \\
& =1544 \mathrm{~kg}
\end{aligned}
$$

Thus the initial amount $\mathbf{= 3 0 8 8} \mathbf{~ k g}$
13.19. How long can an electric lamp of 100 W be kept glowing by fusion of 2.0 kg of deuterium? Take the fusion reaction as
$1 \mathrm{H} 2+1 \mathrm{H} 2 \rightarrow 2 \mathrm{He} 3+\mathrm{n}+3.27 \mathrm{MeV}$

Sol.

Nuclear Reaction:

$$
1 \mathrm{H} 2+1 \mathrm{H} 2 \rightarrow 2 \mathrm{He} 3+\mathrm{n}+3.27 \mathrm{MeV}
$$

No. of atoms in 2 kg deuterium

$$
\begin{aligned}
S & =(\text { Avogadro's No. } \times 2000) / 2 \\
& =6.023 \times 10^{26} \text { atoms }
\end{aligned}
$$

Energy of 1 atom $=3.27 / 2$

$$
=1.635 \mathrm{MeV}
$$

Therefore
Energy of S atoms $=9.85 \times 10^{26} \mathrm{MeV}$

$$
=1.576 \times 10^{14} \mathrm{~J}
$$

We know
Power = Energy / Time
Hence,
Time $=1.576 \times 10^{12} \mathrm{~s}$

Simplifying Test Prep

$=$ About 4.9×10^{4} years

13.20. Calculate the height of the potential barrier for a head on collision of two deuterons. (Hint: The height of the potential barrier is given by the Coulomb repulsion between the two deuterons when they just touch each other. Assume that they can be taken as hard spheres of radius 2.0 fm .)

Sol.

Given:
$\mathrm{R}=2 \mathrm{fm}$
For head on collision

$$
\begin{aligned}
\mathrm{d} & =\mathrm{R}+\mathrm{R} \\
& =4 \mathrm{fm}
\end{aligned}
$$

Height of the potential barrier

$$
\mathrm{V}=\frac{e^{2}}{4 \pi \epsilon_{0} d}
$$

Substituting values yields
$\mathrm{V}=5.76 \times 10^{-14} \mathrm{~J}$
$=360 \mathrm{keV}$
13.21. From the relation $R=R 0 A 1 / 3$, where $R 0$ is a constant and A is the mass number of a nucleus, show that the nuclear matter density is nearly constant (i.e. independent of A).

Simplifying Test Prep

Sol.

We know
Nuclear mass density = mass / volume

Now \quad Mass $\propto A$
And \quad Volume $\propto \mathrm{R}^{3}$

Since $R \propto A^{1 / 3}$
Therefore
Volume $\propto \mathrm{A}$
When putting these proportional values in eq. (1), A gets cancelled. Hence shown!
13.22. For the $\beta+$ (positron) emission from a nucleus, there is another competing process known as electron capture (electron from an inner orbit, say, the $\mathrm{K}-$ shell, is captured by the nucleus and a neutrino is emitted).

$$
\mathrm{e}^{+}+\mathrm{ZXA} \rightarrow(\mathrm{Z}-1) \mathrm{YA}+\mathrm{v}
$$

Show that if $\beta+$ emission is energetically allowed, electron capture is necessarily allowed but not vice-versa.

Sol.

The two processes:

Simplifying Test Prep
for positron capture

$$
\mathrm{z}^{\mathrm{A}} \rightarrow \mathrm{Z}-1 \mathrm{Y}^{\mathrm{A}}+\mathrm{e}^{+}+\mathrm{v}_{\mathrm{e}}+\mathrm{Q}_{1}
$$

for electron capture

$$
\mathrm{e}^{-}+\mathrm{Z}^{\mathrm{A}} \rightarrow \mathrm{Z}-1 \mathrm{Y}^{\mathrm{A}}+\mathrm{v}_{\mathrm{e}}+\mathrm{Q}_{2}
$$

Calculating Q_{1}

$$
\begin{aligned}
\mathrm{Q}_{1} & =\left[\mathrm{M}_{\mathrm{N}}\left(\mathrm{z} X^{\mathrm{A}}\right)-\mathrm{Z} \mathrm{M}_{\mathrm{e}}-\mathrm{M}\left(\mathrm{z-1} \mathrm{Y}^{\mathrm{A}}\right)-(\mathrm{Z}-1) \mathrm{M}_{\mathrm{e}}-\mathrm{M}_{\mathrm{e}}\right] \cdot \mathrm{c}^{2} \\
& \left.=\left[\mathrm{M}_{(\mathrm{Z}} \mathrm{X}^{\mathrm{A}}\right)-\mathrm{M}\left(\mathrm{z-1} \mathrm{Y}^{\mathrm{A}}\right)-2 \mathrm{M}_{\mathrm{e}}\right] \mathrm{c}^{2}
\end{aligned}
$$

Calculation for Q_{2}

$$
\begin{aligned}
\mathrm{Q}_{2} & =\left[\mathrm{M}_{\mathrm{N}}\left(\mathrm{z}^{\mathrm{A}}\right)+\mathrm{M}_{\mathrm{e}}-\mathrm{M}_{\mathrm{N}}\left(\mathrm{z}_{-1} \mathrm{Y}^{\mathrm{A}}\right)\right] \mathrm{c}^{2} \\
& \left.=\left[\mathrm{M}_{\mathrm{z}} \mathrm{X}^{\mathrm{A}}\right)-\mathrm{M}\left(\mathrm{z-1} \mathrm{Y}^{\mathrm{A}}\right)\right] \mathrm{c}^{2}
\end{aligned}
$$

From the above calculations, it is obvious that

$$
\begin{array}{r}
\text { if } \mathrm{Q}_{1}>0 \\
\text { then } \mathrm{Q}_{2}>0
\end{array}
$$

But if $\mathrm{Q}_{2}>0$
then it can't be said that $\mathrm{Q}_{1}>0$

Hence the result!

