Chapter. 6
 Electromagnetic induction
 Class - XII
 Subject - Physics

6.1. Predict the direction of induced current in the situations described by the following Figs.

a)

Sol.

Direction: qrpq

b)

Sol.

Direction: prqp; yzxy

c)

Sol.

Direction: yzxy

Get SOLVED \& UNSOLVED question papers, updated Syllabus, Sample papers and study material and much more.
d)

Sol.
Direction: zyxz.
e)

Sol.

Direction: xryx
f)

Sol.

Direction: No induced current.

6.2. Use Lenz's law to determine the direction of induced current in the situations described by Fig. 6.19:
a) A wire of irregular shape turning into a circular shape;

A circular loop being deformed into a narrow straight wire.

Physics Class $12^{\text {th }}$ NCERT Solutions

Simplifying Test Prep

Sol.

German physicist Heinrich Friedrich Lenz gave us a law known as Lenz's law, stating:
"The polarity of induced emf is such that it tends to produce a current which opposes the change in magnetic flux that produced it."
Lenz's law opposes the very cause that causes it.
a) Since the passing flux is increasing, the direction of induced current as per Lenz's law will be: adcba.
b) Since the passing flux is decreasing, the direction of induced current as per Lenz's law is: $\mathbf{a}^{\prime} \mathbf{d}^{\prime} \mathbf{c}^{\mathbf{\prime}} \mathbf{b} \mathbf{'}^{\mathbf{a}}$ '.
6.3. A long solenoid with 15 turns per cm has a small loop of area 2.0 cm 2 placed inside the solenoid normal to its axis. If the current carried by the solenoid changes steadily from 2.0 A to 4.0 A in 0.1 s , what is the induced emf in the loop while the current is changing?

Sol.

Simplifying Test Prep
Given:
$\mathrm{n}=15$ turns $/ \mathrm{cm}$
$\mathrm{a}=2 \mathrm{sq} . \mathrm{cm}$
$\mathrm{dt}=0.1 \mathrm{~s}$
$\mathrm{Ii}=2 \mathrm{~A}$
If $=4 \mathrm{~A}$
$\Theta=0$

We kn
$\Phi=B \cdot A \cdot \cos \Theta$
Before calculating flux, we need to determine initial and final B.
Initial magnetic field, $B i=\mu_{o} n I i$
Substituting the values
$\mathrm{Bi}=(4 \pi \times 10-7) \cdot(1500) .(2)$
Or $\mathrm{Bi}=3.77 \times 10^{-3} \mathrm{~T}$
Now
Final magnetic field, $\mathrm{Bf}=(4 \pi \times 10-7) .(1500) .(4)$
$=7.54 \times 10^{-3} \mathrm{~T}$
Now calculating initial and final fluxes by substituting the corresponding values of B in eq. (1)
Initial value of flux $=\mathrm{Bi} \cdot \mathrm{A} \cdot \cos 0$

$$
\begin{aligned}
& =\left(3.77 \times 10^{-3}\right) \cdot\left(2 \times 10^{-4}\right) \\
& =7.54 \times 10^{-7} \mathrm{~Wb}
\end{aligned}
$$

Final value of flux $=B \cdot \mathrm{~A} \cdot \mathrm{~A} \cdot \cos 0$

$$
\begin{aligned}
& =\left(7.54 \times 10^{-3}\right) \cdot\left(2 \times 10^{-4}\right) \\
& =1.51 \times 10^{-6} \mathrm{~Wb}
\end{aligned}
$$

Therefore induced emf
$\mathrm{E}=$ Difference in flux $/$ Corresponding time interval
Or $\mathrm{E}=\left[\left(1.51 \times 10^{-6} \mathrm{~Wb}\right)-\left(7.54 \times 10^{-7} \mathrm{~Wb}\right)\right] / 0.1$
Or $\mathrm{E}=7.56 \times 10^{-6} \mathrm{~V}$

6.4. A rectangular wire loop of sides $\mathbf{8} \mathbf{c m}$ and 2 cm with a small cut

 is moving out of a region of uniform magnetic field of magnitude 0.3 T directed normal to the loop. What is the emf developed across the cut if the velocity of the loop is $\mathbf{1 ~ c m ~ s - 1}$ in a direction normal to thea) longer side,
b) Shorter side of the loop? For how long does the induced voltage last in each case?

Sol.
Given:
length $=8 \mathrm{~cm}$
breadth $=2 \mathrm{~cm}$
$\mathrm{B}=0.3 \mathrm{~T}$

$$
\text { velocity }=1 \mathrm{~cm} / \mathrm{s}
$$

Area of the loop

$$
\mathrm{A}=0.0016 \text { sq. } \mathrm{m}
$$

The loop is moving with the given velocity. As long as the loop lies completely in the magnetic field, no emf will be induced as there is no change in the flux. But the moment it starts slipping into the outer space, the flux passing through the loop decreases and an emf is induced. Since the circuit is not complete, current will not flow.

Value of initial flux $=\mathrm{BA} \cos 0$

$$
\begin{aligned}
& =0.3 \times 0.0016 \\
& =0.00048 \mathrm{~Wb}
\end{aligned}
$$

Value of final flux $=0$, (because no part of loop now lies in given magnetic field)
Considering the given cases
a) In this case the time elapsed is

$$
\begin{aligned}
\mathrm{t} & =\text { distance } / \text { speed } \\
& =2 / 1 \\
& =2 \mathrm{~s}
\end{aligned}
$$

Simplifying Test Prep
So induced emf

$$
\mathrm{E}=\mathrm{d} \Phi / \mathrm{dt}
$$

$$
E=(0.00048-0) / 2
$$

Or $\quad \mathrm{E}=2.4 \times 10^{-4} \mathrm{~V}$
The voltage will last 2 seconds.
b) Here the time elapsed is

$$
\begin{aligned}
\mathrm{t} & =8 / 1 \\
& =8 \mathrm{~s}
\end{aligned}
$$

Thus induced emf

$$
\begin{aligned}
& \mathrm{E}=\mathrm{d} \Phi / \mathrm{dt} \\
& \mathrm{E}=0.00048 / 8
\end{aligned}
$$

Or $E=6 \times 10^{-5} \mathrm{~V}$
The voltage will last 8 seconds.
6.5. A 1.0 m long metallic rod is rotated with an angular frequency of $\mathbf{4 0 0} \mathbf{~ r a d ~ s} \mathbf{- 1}$ about an axis normal to the rod passing through its one end. The other end of the rod is in contact with a circular metallic ring. A constant and uniform magnetic field of 0.5 T parallel to the axis exists everywhere. Calculate the emf developed between the centre and the ring.

Sol.

Given:
$\mathrm{r}=1 \mathrm{~m}$
$\mathrm{w}=400 \mathrm{rad} / \mathrm{s}$
$\mathrm{B}=0.5 \mathrm{~T}$
$\Phi=$ B.A. $\cos 0$
$=0.5 \times 3.14 \times 1 \times 1$

$$
\begin{aligned}
& =1.571 \mathrm{~Wb} \\
& \Phi=B . A \cdot \cos 180 \\
& =-1.571 \mathrm{~Wb} \\
& \mathrm{w}=400 \\
& \text { Or } \mathrm{f}=400 / 2 \times 3.14=63.66 / \mathrm{s} \\
& \text { Therefore } \\
& \mathrm{E}=[1.571-(-1.571)] / 0.0314 \\
& \text { Or } \mathrm{E}=100 \mathrm{~V}
\end{aligned}
$$

6.6. A circular coil of radius 8.0 cm and 20 turns is rotated about its vertical diameter with an angular speed of $50 \mathrm{rad} \mathrm{s}-1$ in a uniform horizontal magnetic field of magnitude $3.0 \times 10-2 \mathrm{~T}$. Obtain the maximum and average emf induced in the coil. If the coil forms a closed loop of resistance 10Ω, calculate the maximum value of current in the coil. Calculate the average power loss due to Joule heating. Where does this power come from?

Sol.

Given:
$\mathrm{r}=8 \mathrm{~cm}$
$\mathrm{N}=20$ turns
$\mathrm{w}=50 \mathrm{rad} / \mathrm{s}$
$\mathrm{B}=0.03 \mathrm{~T}$
$\mathrm{R}=10$ ohms

Flux through N turns is given by
$\Phi=$ NBAcoswt
Induced emf $\mathrm{E}=\mathrm{d} \Phi / \mathrm{dt}$
Or E $=-\mathrm{wNAB} \sin w t$
For maximum induced emf
sinwt = 1
Therefore

Emax $=50 \times 20 \times 3.14 \times 0.08 \times 0.08 \times 0.03$
Or $\quad \mathrm{E}_{\text {max }}=0.603 \mathrm{~V}$
Average induced emf
Eavg $=$ zero over each cycle

When the current is allowed to flow
Maximum value of current
$\operatorname{Imax}=\mathrm{E}_{\text {max }} / \mathrm{R}$
Or $\mathrm{I}_{\text {max }}=0.603 / 10$
Or $\mathrm{I}_{\text {max }}=0.0603 \mathrm{~A}$
Average power loss
$\mathrm{P}_{\text {avg }}=$ Emax.Imax / 2
$=[(0.603) .(0.0603)] / 2$
$=0.0182 \mathrm{~W}$
The induced current in the loop produces a torque opposing the rotational motion. This is countered by the rotor rotating the coil, and the power is dissipated as heat in the coil.
6.7. A horizontal straight wire 10 m long extending from east to west is falling with a speed of $5.0 \mathrm{~m} \mathrm{~s}-1$, at right angles to the horizontal component of the earth's magnetic field, $0.30 \times 10-4 \mathbf{W b}$ m-2.
a) What is the instantaneous value of the emf induced in the wire?
b) What is the direction of the emf?
c) Which end of the wire is at the higher electrical potential?

Sol.

Given:

$$
\begin{aligned}
& \mathrm{l}=10 \mathrm{~m} \\
& \mathrm{v}=5 \mathrm{~m} / \mathrm{s} \\
& \mathrm{H}=0.3 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{2}
\end{aligned}
$$

a) Einst $=$ Blv

$$
\begin{aligned}
& =(0.00003) \cdot(10) \cdot(5) \\
& =1.5 \times 10^{-3} \mathrm{~V}
\end{aligned}
$$

b) West to east.
c) Eastern end.
6.8. Current in a circuit falls from 5.0 A to 0.0 A in 0.1 s . If an average emf of 200 V induced, give an estimate of the self-inductance of the circuit.

Sol.

Given:
$\mathrm{dI}=5-0=5 \mathrm{~A}$
$\mathrm{dt}=0.1 \mathrm{~s}$
Eavg $=200 \mathrm{~V}$
We know
$\mathrm{E}=\mathrm{L} . \mathrm{dI} / \mathrm{dt}$
Substitution yields
$L=4 \mathbf{H}$
6.9. A pair of adjacent coils has a mutual inductance of 1.5 H . If the current in one coil changes from 0 to 20 A in 0.5 s , what is the change of flux linkage with the other coil?

Sol.

Given:
$\mathrm{M}=1.5 \mathrm{H}$
$\mathrm{dI}=20 \mathrm{~A}$
$\mathrm{dt}=0.5 \mathrm{~s}$
$\mathrm{d}(\mathrm{N} \mathrm{\Phi}) / \mathrm{dt}=\mathrm{d}(\mathrm{MI}) / \mathrm{dt}$
Putting the values
$\mathrm{d}(\mathrm{N} \Phi)=30$ webers
6.10. A jet plane is travelling towards west at a speed of $1800 \mathrm{~km} / \mathrm{h}$. What is the voltage difference developed between the ends of the wing having a span of 25 m , if the Earth's magnetic field at the location has a magnitude of $5 \times 10-4 \mathrm{~T}$ and the dip angle is 30°.

Sol.

Given:
$\mathrm{v}=500 \mathrm{~m} / \mathrm{s}$
$1=25 \mathrm{~m}$
$\mathrm{B}=0.0005 \mathrm{~T}$
$\mathrm{I}=30$ degrees

Vertical component of $\mathrm{B}, \mathrm{Bv}=0.0005 \mathrm{x} \sin 30$

$$
=0.00025 \mathrm{~T}
$$

Therefore voltage
$\mathrm{E}=\mathrm{Bv} . \mathrm{l} . \mathrm{v}$
Or $\mathrm{E}=0.00025 \times 25 \times 500$
Or $\mathrm{N} \Phi \mathrm{E}=3.125$ volts

