Chapter. 4
Moving Charges and Magnetism
Class - XII
Subject - Physics

4.1. A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A . What is the magnitude of the magnetic field B at the centre of the coil?

Sol.

Given:
$\mathrm{N}=100$
$\mathrm{R}=8 \mathrm{~cm}$
$\mathrm{I}=0.4 \mathrm{~A}$

By the formula

$$
B=\frac{\mu_{0} I N}{2 R}
$$

Substitution yields
$B=3.1 \times 10^{-4} \mathrm{~T}$
4.2. A long straight wire carries a current of 35 A . What is the magnitudeof the field B at a point 20 cm from the wire?

Sol.

Given:
$\mathrm{I}=35 \mathrm{~A}$
$\mathrm{x}=20 \mathrm{~cm}$

Let us consider an Amperian loop of radius equal to x , i.e. 20 cm Therefore by formula

$$
B=\frac{\mu_{o} I}{2 \pi R}
$$

Solving for B
$\mathrm{B}=3.5 \times 10^{-5} \mathrm{~T}$
4.3. A long straight wire in the horizontal plane carries a current of 50 Ain north to south direction. Give the magnitude and direction of B at a point 2.5 m east of the wire.

Sol.
Given:
$\mathrm{I}=50 \mathrm{~A}$
$\mathrm{R}=2.5 \mathrm{~m}$
Using the above formula
$B=4 \times 10^{-6} \mathrm{~T}$
Direction is vertical up.
4.4. A horizontal overhead power line carries a current of 90 A in east towest direction. What is the magnitude and direction of the magnetic field due to the current 1.5 m below the line?

Sol.
Given:
$\mathrm{I}=90 \mathrm{~A}$
$\mathrm{R}=1.5 \mathrm{~m}$
Considering Amperian loop and using the above formula $B=\left(2 \times 10^{-7}\right) .(90) / 1.5$

Or B $=1.2 \times 10^{-5} \mathrm{~T}$
Direction is towards south.
4.5. What is the magnitude of magnetic force per unit length on a wirecarrying a current of 8 A and making an angle of 30° with the direction of a uniform magnetic field of 0.15 T ?

Sol.
Given:
$\mathrm{I}=8 \mathrm{~A}$
angle $=30^{\circ}$
$\mathrm{B}=0.15 \mathrm{~T}$
$1=1 \mathrm{~m}$
The force is given by

$$
\mathrm{F}=\mathrm{I} .1 . \mathrm{B} \cdot \sin \Theta
$$

Or

$$
\mathrm{F}=8 \times 1 \times 0.15 \times 0.5
$$

Or
$\mathrm{F}=0.6 \mathrm{~N} / \mathrm{m}$

4.6. A 3.0 cm wire carrying a current of 10 A is placed inside a

 solenoidperpendicular to its axis. The magnetic field inside the solenoid is given to be 0.27 T . What is the magnetic force on the wire?Sol.
Given:
$1=3 \mathrm{~cm}$
$\mathrm{I}=10 \mathrm{~A}$
$\mathrm{B}=0.27 \mathrm{~T}$
$\theta=90^{\circ}$
Then the force

$$
\mathrm{F}=\mathrm{I} .1 . \mathrm{B} \cdot \sin \Theta
$$

Substituting the values give

$$
\mathrm{F}=0.081 \mathrm{~N}
$$

4.7. Two long and parallel straight wires A and B carrying currents of8.0 A and 5.0 A in the same direction are separated by a distance of 4.0 cm . Estimate the force on a 10 cm section of wire A .

Sol.
Given:
$\mathrm{Ia}=8 \mathrm{~A}$
$\mathrm{Ib}=5 \mathrm{~A}$
$\mathrm{d}=4 \mathrm{~cm}$
$\mathrm{L}=10 \mathrm{~cm}$
Force of wire A

$$
\mathrm{F}=\frac{\mu_{0} . I a . I b . L}{2 \pi d}
$$

Or

$$
\mathrm{F}=2 \times 10^{-5} \mathrm{~N}
$$

4.8. A closely wound solenoid 80 cm long has 5 layers of windings of 400 turns each. The diameter of the solenoid is 1.8 cm . If the current carried is 8.0 A , estimate the magnitude of \mathbf{B} inside the solenoid near its centre.

Sol.
Given:
$\mathrm{L}=80 \mathrm{~cm}$
$\mathrm{N}=2000$

Simplifying Test Prep
$\mathrm{r}=0.9$
$\mathrm{I}=8 \mathrm{~A}$
Enclosed current Ie $=8 \times 2000=16000 \mathrm{~A}$
Since, BL $=\mu_{o}$ Ie
Putting the values
$\mathrm{B}=\mu_{o} .16000 / 0.8=0.025 \mathrm{~T}$
4.9. A square coil of side 10 cm consists of 20 turns and carries a currentof 12 A . The coil is suspended vertically and the normal to the plane of the coil makes an angle of 30° with the direction of a uniform horizontal magnetic field of magnitude 0.80 T . What is the magnitude of torque experienced by the coil?

Sol.
Given:
$\mathrm{L}=10 \mathrm{~cm}$
$\mathrm{N}=20$
$\mathrm{I}=12 \mathrm{~A}$
$\theta=30^{\circ}$
$\mathrm{B}=0.8 \mathrm{~T}$
We know
Torque $=\mathrm{mB} \cdot \sin \Theta$
Or $T=$ NIABsin Θ
Or $\quad T=20 \times 12 \times 0.1 \times 0.1 \times 0.8 \times 0.5$
Or $\mathrm{T}=0.96 \mathrm{Nm}$
4.10. Two moving coil meters, M1 and M2 have the following particulars:
$\mathrm{R} 1=10 \Omega, \mathrm{~N} 1=30$,
$\mathrm{A} 1=3.6 \times 10-3 \mathrm{~m} 2, \mathrm{~B} 1=0.25 \mathrm{~T}$
$R 2=14 \Omega, N 2=42$,
$\mathrm{A} 2=1.8 \times 10-\mathbf{3} \mathrm{m} 2, \mathrm{~B} 2=0.50 \mathrm{~T}$

Physics Class $12{ }^{\text {th }}$ NCERT Solutions

Simplifying Test Prep
(The spring constants are identical for the two meters).
Determine the ratio of
a) current sensitivity and
b) Voltage sensitivity of M2 and M1.

Sol.

Given:

Details of M1
R1 = 10 ohms
$\mathrm{N} 1=30$
$\mathrm{A} 1=3.6 \times 10-3 \mathrm{~m} 2$
$\mathrm{B} 1=0.25 \mathrm{~T}$

Details of M2
$\mathrm{R} 2=14 \mathrm{ohms}$
$\mathrm{N} 2=42$
$\mathrm{A} 2=1.8 \times 10-3 \mathrm{~m} 2$
$\mathrm{B} 2=0.5 \mathrm{~T}$
a) Current sensitivity of M
$=$ N1.A1.B1/k
Current sensitivity of M2
$=\mathrm{N} 2 . \mathrm{A} 2 . \mathrm{B} 2 / \mathrm{k}$
Ratio of current sensitivity
$=\mathrm{N} 2 \mathrm{~A} 2 \mathrm{~B} 2 / \mathrm{N} 1 \mathrm{~A} 1 \mathrm{~B} 1$ (since k is identical)
$=0.0378 / 0.027$
$=1.4$

Thus ratio of current sensitivity of M2 and M1 is 1.4
b) Voltage sensitivity of M1
= N1.A1.B1 / k.R1

Voltage sensitivity of M2

$$
=\mathrm{N} 2 . \mathrm{A} 2 \cdot \mathrm{~B} 2 / \mathrm{k} \cdot \mathrm{R} 2
$$

Ratio of voltage sensitivity

$$
=\text { N2A2B2R1 / N1A1B1R2 }
$$

$$
\begin{aligned}
& =0.378 / 0.378 \\
& =1
\end{aligned}
$$

Thus ratio of voltage sensitivity of M 2 and M 1 is 1 .
4.11. In a chamber, a uniform magnetic field of $6.5 \mathrm{G}(1 \mathrm{G}=10-4 \mathrm{~T})$ is maintained. An electron is shot into the field with a speed of 4.8×106 $\mathrm{m} \mathrm{s}-1$ normal to the field. Explain why the path of the electron is a circle. Determine the radius of the circular orbit. $(\mathrm{e}=1.6 \times 10-19 \mathrm{C}$, $m e=9.1 \times 10-31 \mathrm{~kg}$)

Sol.

Since the electron has velocity perpendicular to magnetic field B, the centripetal force ($\mathrm{q} . \mathrm{V} \times \mathrm{B}$) comes in action and a circular motion is described by electron perpendicular to the magnetic field.

Its radius is given by

$$
\mathrm{r}=\mathrm{mv} / \mathrm{qB}
$$

Here

$$
\begin{aligned}
& \mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{v}=4.8 \times 10^{6} \mathrm{~m} / \mathrm{s} \\
& \mathrm{q}=1.6 \times 10^{-19} \mathrm{C} \\
& \mathrm{~B}=6.5 \times 10^{-4} \mathrm{~T}
\end{aligned}
$$

Substituting the values we get

$$
\mathrm{r}=0.042 \mathrm{~m}
$$

4.12. In Exercise 4.11 obtain the frequency of revolution of the electron in its circular orbit. Does the answer depend on the speed of the electron? Explain.

Sol.

Frequency of revolution, $w=v / r$
Or $2 \pi \mathrm{f}=4.8 \times 106 / 0.042$
Or $\quad \mathrm{f}=18 \mathrm{MHz}$
Frequency is independent of velocity.
4.13.
a) A circular coil of 30 turns and radius 8.0 cm carrying a current of 6.0 A is suspended vertically in a uniform horizontal magnetic field of magnitude 1.0 T. The field lines make an angle of 60° with the normal of the coil. Calculate the magnitude of the counter torque that must be applied to prevent the coil from turning.
b) Would your answer change, if the circular coil in (a) were replaced by a planar coil of some irregular shape that encloses the same area? (All other particulars are also unaltered.)

Sol.

Given:
$\mathrm{N}=30$
$\mathrm{r}=8 \mathrm{~cm}$
$\mathrm{I}=6 \mathrm{~A}$
$B=1 T$
$\Theta=60^{\circ}$
a) We know

Torque $=$ NIABsin Θ
Substituting the values
Torque $=3.13 \mathrm{Nm}$
b) No, the torque does not depend on configuration of loop.

