

Chapter.4 Chemical kinetics Class-XII Subject-Chemistry

- 4.1 From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.
 - i. $3 \text{ NO } (g) \rightarrow \text{N}_2\text{O} (g) \text{ Rate} = k[\text{NO}]^2$
 - ii. $H_2O_2(aq) + 3I^-(aq) + 2H^+ \rightarrow 2H_2O(1) + I_3^- Rate = k[H_2O_2][I^-]$
 - iii. $CH_3CHO(g) \rightarrow CH_4(g) + CO(g)$ Rate = k [CH₃CHO]^{3/2}
 - iv. $C_2H_5Cl(g) \rightarrow C_2H_4(g) + HCl(g)$ Rate = $k[C_2H_5Cl]$

Answer 4.1

i. Rate =
$$k [NO]^2$$

Hence, order of the reaction = 2

Unit of
$$k = \frac{Rate}{[NO]^2}$$

$$=\frac{mol/l \sec}{\left(mol/l\right)^2}$$

$$= l / mol sec$$

ii. Rate =
$$k [H_2O_2] [I^-]$$

Hence, order of the reaction = 2

Unit of
$$k = \frac{Rate}{[H_2O_2][I^-]}$$

$$= \frac{mol/l \sec}{(mol/l)^2}$$
$$= l/mol \sec$$

iii. Rate =
$$k \left[\text{CH}_3 \text{CHO} \right]^{3/2}$$

Hence, order of reaction
$$=\frac{3}{2}$$

Unit of
$$k = \frac{Rate}{\left[CH_3CHO\right]^{3/2}}$$

$$= \frac{mol / l \operatorname{sec}}{(mol / l)^{3/2}}$$
$$= l^{1/2} / mol^{1/2} \operatorname{sec}$$

iv. Rate =
$$k [C_2H_5C1]$$

Hence, order of the reaction = 1

Unit of
$$k = \frac{Rate}{\left[C_2 H_5 Cl\right]}$$

$$= \frac{mol / l \sec}{(mol / l)}$$
$$= \sec^{-1}$$

4.2 For the reaction:

$$2A + B \rightarrow A_2B$$

The rate = $k[A][B]^2$ with $k = 2.0 \times 10^{-6} \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1}$. Calculate the initial rate of the reaction when $[A] = 0.1 \text{ mol L}^{-1}$, $[B] = 0.2 \text{ mol L}^{-1}$. Calculate the rate of reaction after [A] is reduced to 0.06 mol/L.

Answer 4.2

The initial rate of the reaction is

Rate =
$$k [A][B]^2$$

$$= (2.0 \times 10^{-6}) (0.1) (0.2)^{2}$$

$$= 8.0 \times 10^{-9} \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1}$$

Now,

Concentration of A reacted = $(0.1 - 0.06) = 0.04 \text{ mol L}^{-1}$

Concentration of B reacted =
$$\frac{1}{2} \times 0.04 = 0.02 \text{ mol L}^{-1}$$

Concentration of B available, $[B] = (0.2 - 0.02) = 0.18 \text{ mol L}^{-1}$

Now, rate of the reaction becomes,

Rate =
$$k[A][B]^2$$

$$= (2.0 \times 10^{-6}) (0.06) (0.18)^{2}$$

$$= 3.89 \text{ mol L}^{-1} \text{ s}^{-1}$$

4.3 The decomposition of NH₃ on platinum surface is zero order reaction. What are the rates of production of N₂ and H₂ if $k = 2.5 \times 10^{-4}$ mol⁻¹L s⁻¹?

Answer 4.3

The decomposition of NH₃ can be represented by,

$$2NH_{3(g)} \xrightarrow{Pt} N_{2(g)} + 3H_{2(g)}$$

Hence, rate of reaction will be,

$$Rate = -\frac{1}{2} \frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{3} \frac{d[H_2]}{dt}$$

We know that, reaction order = zero

Thus,

$$Rate = -\frac{1}{2} \frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{3} \frac{d[H_2]}{dt} = k$$
$$= 2.5 \times 10^{-4} \text{ mol} / l \text{ sec}$$

Now,

Rate of formation of N₂ is

$$\frac{d[N_2]}{dt} = 2.5 \times 10^{-4} \ mol / l \ sec$$

Rate of formation of H₂ is

$$\frac{d[H_2]}{dt} = 3 \times 2.5 \times 10^{-4} \ mol/l \ sec$$
$$= 7.5 \times 10^{-4} \ mol/l \ sec$$

4.4 The decomposition of dimethyl ether leads to the formation of CH_4 , H_2 and CO and the reaction rate is given by

Rate =
$$k \left[\text{CH}_3 \text{OCH}_3 \right]^{3/2}$$

The rate of reaction is followed by increase in pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl ether, i.e.,

$$Rate = k \left(p_{CH_3OCH_3} \right)^{3/2}$$

If the pressure is measured in bar and time in minutes, then what are the units of rate and rate constants?

Answer 4.4

$$Rate = k \left(p_{CH_3OCH_3} \right)^{3/2}$$

$$k = \frac{Rate}{\left(p_{CH_3OCH_3}\right)^{3/2}}$$

Unit of rate = $bar min^{-1}$

Hence, dimensions of rate constants,
$$k = \frac{bar / min}{bar^{3/2}}$$

$$= bar^{-1/2} \min^{-1}$$

4.5 Mention the factors that affect the rate of a chemical reaction.

Answer 4.5

The factors that affect the rate of a reaction:

- Concentration of Reactants & pressure in case of gases
- Presence of a catalyst
- Temperature
- 4.6 A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is?
 - i. doubled
 - ii. Reduced to half?

Answer 4.6

Let the concentration of the reactant [A] = a

Rate of reaction,

$$R = k[A]^2$$

$$=ka^2$$

i.
$$[A] = 2a$$
,

Rate of the reaction will be,

$$R' = k(2a)^{2}$$
$$= 4ka^{2}$$
$$= 4R$$

Hence, the rate of the reaction will increase by 4 times.

ii.
$$[A] = \frac{a}{2}$$

Then the rate of the reaction will be,

$$R'' = k \left[\frac{a}{2}\right]^{2}$$

$$= \frac{ka}{4}$$

$$= \frac{R}{4}$$

Hence, the rate of the reaction will reduce to one-fourth.

4.7 What is the effect of temperature on the rate constant of a reaction? How can this temperature effect on rate constant be represented quantitatively?

Answer 4.7

The temperature effect on the rate constant can be represented by Arrhenius equation,

$$k = Ae^{-E_a/RT}$$

Where, k = rate constant

A = the Arrhenius factor or the frequency factor

R = gas constant

T =temperature

 E_a = energy of activation for the reaction

Simplifying Test Prep

For a chemical reaction, the rate constant is nearly doubled with a rise in temperature by 10°.

4.8 In a pseudo first order hydrolysis of ester in water, the following results were obtained:

t/s	0	30	60	90
[Ester]mol L ⁻¹	0.55	0.31	0.17	0.085

- i. Calculate the average rate of reaction between the time intervals 30 to 60 seconds.
- ii. Calculate the pseudo first order rate constant for the hydrolysis of ester.

Answer 4.8

i. time intervals = 30 to 60 seconds

Average rate of reaction =
$$\frac{d[ester]}{t}$$

$$= \frac{0.31 - 0.17}{60 - 30}$$
$$= \frac{0.14}{30}$$

$$= 4.67 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$$

ii. For a pseudo first order reaction,

$$k = \frac{2.303}{t} \log \frac{\left[R\right]_0}{\left[R\right]}$$

$$t = 30 \text{ s}$$

$$k_1 = \frac{2.303}{30} \log \frac{0.55}{0.31}$$

$$= 1.911 \times 10^{-2} \,\mathrm{s}^{-1}$$

$$t = 60 \text{ s},$$

$$k_2 = \frac{2.303}{60} \log \frac{0.55}{0.17}$$

$$= 1.957 \times 10^{-2} \,\mathrm{s}^{-1}$$

$$t = 90 \text{ s},$$

$$k_3 = \frac{2.303}{90} \log \frac{0.55}{0.085}$$

$$= 2.075 \times 10^{-2} \text{ s}^{-1}$$

Now,

Average rate constant,
$$k = \frac{k_1 + k_2 + k_3}{3}$$

$$= \frac{\left(1.911 \times 10^{-2}\right) + \left(1.957 \times 10^{-2}\right) + \left(2.075 \times 10^{-2}\right)}{3}$$
$$= 1.98 \times 10^{-2} \text{ sec}^{-1}$$

4.9 A reaction is first order in A and second order in B.

- i. Write the differential rate equation.
- ii. How is the rate affected on increasing the concentration of B three times?
- iii. How is the rate affected when the concentrations of both A and B are doubled?

Answer 4.9

i. The differential rate equation is,

$$-\frac{d[R]}{dt} = k[A][B]^2$$

Simplifying Test Prep

ii. If the concentration of B is increased three times, then rate equation becomes as

$$-\frac{d[R]}{dt} = k[A][3B]^{2}$$
$$= 9k[A][B]^{2}$$

Hence, the rate of reaction will increase 9 times.

iii. When the concentrations of both A and B are doubled, then rate equation becomes as

$$-\frac{d[R]}{dt} = k[2A][2B]^{2}$$
$$= 8k[A][B]^{2}$$

Hence, the rate of reaction will increase 8 times.

4.10 In a reaction between A and B, the initial rate of reaction (r_0) was measured for different initial concentrations of A and B as given below:

A/ mol L ⁻¹	0.20	0.20	0.40	
$B/ \text{ mol } L^{-1}$	0.30	0.10	0.05	
$r_0/ \text{ mol } L^{-1} \text{ s}^{-1}$	5.07×10^{-5}	5.07×10^{-5}	1.43×10^{-4}	

What is the order of the reaction with respect to A and B?

Answer 4.10

Let the order of the reaction with respect to A is x and with respect to B be y.

Hence, rate of reaction will be

$$r_0 = k [A]^x [B]^y$$

$$5.07 \times 10^{-5} = k[0.20]^x[0.30]^y$$
....(1)

$$5.07 \times 10^{-5} = k [0.20]^x [0.10]^y$$
(2)

$$1.43 \times 10^{-4} = k [0.40]^{x} [0.05]^{y} \dots (3)$$

Dividing equation (1) by (3),

$$\frac{5.07 \times 10^{-5}}{5.07 \times 10^{-5}} = \frac{k [0.20]^{x} [0.30]^{y}}{k [0.20]^{x} [0.10]^{y}}$$

$$1 = \frac{\left[0.30\right]^y}{\left[0.10\right]^y}$$

$$[3]^y = 1$$

$$y = 0$$

Dividing equation (3) by (2),

$$\frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}} = \frac{k [0.40]^{x} [0.05]^{y}}{k [0.20]^{x} [0.30]^{y}}$$

$$y = 0$$

$$\frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}} = \frac{\left[0.40\right]^x}{\left[0.20\right]^x}$$

$$2.821 = [2]^x$$

Taking log both sides

$$x \log 2 = \log 2.821$$

$$x = 1.496$$

$$x \approx 1.5$$

Thus, the order of the reaction with respect to A is 1.5 and with respect to B is zero.

Simplifying Test Prep

4.11 The following results have been obtained during the kinetic studies of the reaction:

$$2A + B \rightarrow C + D$$

Experiment	A/ mol L ⁻¹	B/ mol L ⁻¹	Initial rate of formation of D/mol L ⁻¹ min ⁻¹
I	0.1	0.1	6.0×10^{-3}
II	0.3	0.2	7.2×10^{-2}
III	0.3	0.4	2.88×10^{-1}
IV	0.4	0.1	2.40×10^{-2}

Determine the rate law and the rate constant for the reaction.

Answer 4.11

Let the order of the reaction with respect to A is x and with respect to B be y.

Hence, rate of reaction will be

$$Rate = k [A]^x [B]^y$$

Now,

As per the question,

$$6 \times 10^{-3} = k[0.1]^x[0.1]^y$$
....(1)

$$7.2 \times 10^{-2} = k [0.3]^x [0.2]^y \dots (2)$$

$$2.88 \times 10^{-1} = k [0.3]^x [0.4]^y \dots (3)$$

$$2.4 \times 10^{-2} = k [0.4]^{x} [0.1]^{y} \dots (4)$$

Dividing equation (1) by (4),

$$\frac{6 \times 10^{-3}}{2.4 \times 10^{-2}} = \frac{k [0.1]^{x} [0.1]^{y}}{k [0.4]^{x} [0.1]^{y}}$$

$$\frac{1}{4} = \frac{\left[0.1\right]^x}{\left[0.4\right]^x}$$
$$\left(4\right)^x = 4$$
$$x = 1$$

Dividing equation (2) by (3),

$$\frac{7.2 \times 10^{-2}}{2.88 \times 10^{-1}} = \frac{k [0.3]^{x} [0.2]^{y}}{k [0.3]^{x} [0.4]^{y}}$$

$$\frac{1}{4} = \frac{\left[0.2\right]^{y}}{\left[0.4\right]^{y}}$$

$$\left[2\right]^{y} = 4$$

$$[2]^{y} = 4$$

$$y = 2$$

Hence, the rate law is

$$Rate = k[A][B]^2$$

$$k = \frac{Rate}{\left[A\right]\left[B\right]^2}$$

From experiment I,

$$k = \frac{6 \times 10^{-3}}{0.1 \times 0.1}$$

$$= 6 L^2 / mol^2 min$$

From experiment II,

$$k = \frac{7.2 \times 10^{-2}}{0.3 \times 0.2}$$

$$= 6 L^2 / mol^2 min$$

From experiment III,

$$k = \frac{2.88 \times 10^{-1}}{0.3 \times 0.4}$$

$$= 6 L^2 / mol^2 min$$

From experiment IV,

$$k = \frac{2.4 \times 10^{-2}}{0.1 \times 0.4}$$

$$= 6 L^2 / mol^2 min$$

Hence, rate constant, $k = 6.0 \text{ L}^2 \text{ mol}^{-2} \text{ min}^{-1}$

4.12 The reaction between A and B is first order with respect to A and zero order with respect to B. Fill in the blanks in the following table:

Experiment	$A/ \text{ mol } L^{-1}$	B/ mol L ⁻¹	Initial rate/mol L ⁻¹ min ⁻¹
I	0.1	0.1	2.0×10^{-2}
II		0.2	4.0×10^{-2}
III	0.4	0.4	
IV	(6)	0.2	2.0×10^{-2}

Answer 4.12

As per the question, rate of the reaction will be,

Rate =
$$k \left[A \right]^1 \left[B \right]^0$$

Rate =
$$k$$
 [A]

From experiment 1,

$$2.0\times10^{-2}=k$$

$$k = 0.2 \text{ min}^{-1}$$

From experiment 2,

$$4.0 \times 10^{-2} = 0.2 [A]$$

$$[A] = 0.2 \text{ mol } L^{-1}$$

From experiment 3,

Rate =
$$0.2 \times 0.4$$

$$= 0.08 \text{ mol L}^{-1} \text{ min}^{-1}$$

From experiment 4,

$$2.0 \times 10^{-2} = 0.2 [A]$$

$$[A] = 0.1 \text{ mol } L^{-1}$$

4.13 Calculate the half-life of a first order reaction from their rate constants given below:

- i. 200 s⁻¹ ii. 2 min⁻¹
- iii. 4 years⁻¹

i. Half life of a first order reaction,
$$t_{1/2} = \frac{0.693}{k}$$

$$=\frac{0.693}{200}$$

$$= 3.47 \text{ s}$$

ii. Half life,
$$t_{1/2} = \frac{0.693}{k}$$

$$=\frac{0.693}{2}$$

$$= 0.35 \min$$

iii. Half life,
$$t_{1/2} = \frac{0.693}{k}$$

$$=\frac{0.693}{4}$$

$$= 0.173$$
 years

4.14 The half-life for radioactive decay of ¹⁴C is 5730 years. An archaeological artifact containing wood had only 80% of the ¹⁴C found in a living tree. Estimate the age of the sample.

Answer 4.14

$$k = \frac{0.693}{t_{1/2}}$$
$$= \frac{0.693}{5730} yr^{-1}$$

Using relation,

$$t = \frac{2.303}{k} \log \frac{\left[R\right]_0}{\left[R\right]}$$

$$=\frac{2.303\times5730}{0.693}\log\frac{100}{80}$$

Thus, the age of the sample is 1845 years.

4.15 The experimental data for decomposition of N_2O_5

$$2N_2O_5 \rightarrow 4NO_2 + O_2$$

In gas phase at 318K are given below:

t(s)	0	4	8	12	16	20	24	28	32
		0	0	00	00	00	00	00	00
		0	0						

Simplifying Test Prep

$10^2 \times [N_2 O_5] mc$	1.	1.	1.	0.	0.	0.	0.	0.	0.
	3	6	4						

- i. Plot $[N_2O_5]$ against t.
- ii. Find the half-life period for the reaction.
- iii. Draw a graph between $log [N_2O_5]$ and t.
- iv. What is the rate law?
- v. Calculate the rate constant.
- vi. Calculate the half-life period from k and compare it with b.

Answer 4.15

i.

ii. The concentration =
$$\frac{1.63 \times 100}{2}$$
 = 81.5 mol/l is corresponds to the half-life.

iii.

t(s)	$10^2 \times [N_2 O_5] mol / l$	$\log[N_2O_5]$
0	1.63	-1.79

400	1.36	-1.87
800	1.14	- 1.94
1200	0.93	-2.03
1600	0.78	-2.11
2000	0.64	-2.19
2400	0.53	-2.28
2800	0.43	-2.37
3200	0.35	-2.46

iv.

V.

vi. The plot, $\log[N_2O_5]$ v/s t, is a straight line. Therefore, The given reaction is of the first order.

The rate law of the reaction is

$$Rate = k[N_2O_5]$$

vii. From the plot, we have

Simplifying Test Prep

$$slope = \frac{-2.46 - (-1.79)}{3200 - 0}$$
$$= \frac{-0.67}{3200}$$

Slope of the line of the plot is = $-\frac{k}{2.303}$

Thus,

$$-\frac{k}{2.303} = -\frac{0.67}{3200}$$

$$k = 4.82 \times 10^{-4} \,\mathrm{sec}^{-1}$$

viii. Half-life of the given reaction is,

$$t_{1/2} = \frac{0.639}{k}$$

$$= \frac{0.693}{4.82 \times 10^{-4}} s$$

$$= 1.438 \times 10^{3} s$$

$$= 1438 s$$

This value, 1438 s, is very close to the value that was obtained from the graph.

4.16 The rate constant for a first order reaction is 60 s^{-1} . How much time will it take to reduce the initial concentration of the reactant to its $1/16^{th}$ value?

Answer 4.16

For a first order reaction,

$$t = \frac{2.303}{k} \log \frac{\left[R\right]_0}{\left[R\right]}$$

$$= \frac{2.303}{60} \log \frac{[R]_0}{[R]}$$

$$= \frac{2.303}{60} \log 16$$

$$= 4.6 \times 10^{-2} s$$

Thus, the required time is 4.6×10^{-2} s.

4.17 During nuclear explosion, one of the products is 90 Sr with half-life of 28.1 years. If 1µg of 90 Sr was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically.

Answer 4.17

We have,

$$t_{1/2} = 28.1 \ year$$

$$k = \frac{0.693}{t_{1/2}}$$
$$= \frac{0.693}{28.1} y^{-1}$$

For a first order reaction,

$$t = \frac{2.303}{k} \log \frac{\left[R\right]_0}{\left[R\right]}$$

$$10 = \frac{2.303 \times 28.1}{0.693} \log \frac{1}{[R]}$$

$$10 = \frac{2.303 \times 28.1}{0.693} (-\log[R])$$

$$\log[R] = -\frac{10 \times 0.693}{2.303 \times 28.1}$$

$$\log[R] = -0.1071$$

$$[R] = anti \log(-0.1071)$$

$$= 0.7814 \ \mu g$$

Hence, 0.7814 µg of ⁹⁰Sr will remain after 10 years.

Again,

$$t = \frac{2.303}{k} \log \frac{\left[R\right]_0}{\left[R\right]}$$

$$60 = \frac{2.303 \times 28.1}{0.693} \log \frac{1}{\lceil R \rceil}$$

$$60 = \frac{2.303 \times 28.1}{0.693} \left(-\log[R]\right)$$

$$\log[R] = -\frac{60 \times 0.693}{2.303 \times 28.1}$$

$$\log[R] = -0.6425$$

$$[R] = anti \log(-0.6425)$$
$$= 0.2278 \ \mu g$$

Therefore, 0.2278 µg of ⁹⁰Sr will remain after 60 years.

4.18 For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.

Answer 4.18

For a first order reaction,

$$t = \frac{2.303}{k} \log \frac{\left[R\right]_0}{\left[R\right]}$$

Time required for 99% completion is $= t_1$

$$t_1 = \frac{2.303}{k} \log \frac{100}{100 - 99}$$

$$= \frac{2.303}{k} \log 100$$

$$= \frac{2 \times 2.303}{k}$$

Time required for 90% completion is $= t_2$

$$t_2 = \frac{2.303}{k} \log \frac{100}{100 - 90}$$

$$= \frac{2.303}{k} \log 10$$

$$= \frac{2.303}{k}$$

Hence,

$$t_1 = 2t_2$$

Thus, we can say that time require for 99% completion is twice the time required for the completion of 90% of the reaction.

4.19 A first order reaction takes 40 min for 30% decomposition. Calculate $t_{1/2}$.

Answer 4.19

For a first order reaction,

$$t = \frac{2.303}{k} \log \frac{\left[R\right]_0}{\left[R\right]}$$

Simplifying Test Prep

$$k = \frac{2.303}{40} \log \frac{100}{100 - 30}$$
$$= \frac{2.303}{40} \log \frac{10}{7}$$
$$= 8.918 \times 10^{-3} \,\text{min}^{-1}$$

Now, we can calculate $t_{1/2}$ of the decomposition reaction

$$t_{1/2} = \frac{0.693}{k}$$

$$= \frac{0.693}{8.918 \times 10^{-3}} \text{ min}$$

$$= 77.7 \text{ min}$$

4.20 For the decomposition of azoisopropane to hexane and nitrogen at 543 K, the following data are obtained.

t (sec)	P(mm of Hg)
0	35.0
360	54.0
720	63.0

Calculate the rate constant.

Answer 4.20

$$(CH_3)_2 CHN = NCH(CH_3)_2 \rightarrow N_{2(g)} + C_6H_{14(g)}$$

$$At \ t = 0$$

$$P_0$$

$$At t = t$$

$$P_0 - p$$

After time *t*,

Total pressure, $P_t = P_0 - p + p + p$

$$P_t = P_0 + p$$
$$p = P_t - P_0$$

$$P_0 - p = P_0 - [P_t - P_0]$$
$$= 2P_0 - P_t$$

For a first order reaction,

$$k = \frac{2.303}{t} \log \frac{P_0}{P_0 - p}$$

$$k = \frac{2.303}{t} \log \frac{P_0}{2P_0 - p_t}$$

When
$$t = 360 \text{ s}$$
,

$$k = \frac{2.303}{360} \log \frac{35}{2 \times 35 - 54}$$

$$= 2.175 \times 10^{-3} \text{ s}^{-1}$$

When
$$t = 720 \text{ s}$$
,

$$k = \frac{2.303}{720} \log \frac{35}{2 \times 35 - 63}$$

$$= 2.235 \times 10^{-3} \text{ s}^{-1}$$

Hence, the average value of rate constant is

$$k = \frac{\left(2.175 \times 10^{-3}\right) + \left(2.235 \times 10^{-3}\right)}{2}$$

$$= 2.21 \times 10^{-3} \text{ s}^{-1}$$

4.21 The following data were obtained during the first order thermal decomposition of SO_2Cl_2 at a constant volume.

$$SO_2Cl_{2(g)} \rightarrow SO_{2(g)} + Cl_{2(g)}$$

Experiment	Time/s ⁻¹	Total pressure/atm
1	0	0.5
2	100	0.6

Calculate the rate of the reaction when total pressure is 0.65 atm.

Answer 4.21

The thermal decomposition of SO₂Cl₂ at a constant volume is represented by the following equation.

$$SO_2Cl_{2(g)} \rightarrow SO_{2(g)} + Cl_{2(g)}$$

$$At t = 0$$

$$P_0$$

$$At \ t = t \qquad \qquad \mathbf{P_0} - p$$

$$P_0 - p$$

After time *t*,

Total pressure, $P_t = P_0 - p + p + p$

$$P_t = P_0 + p$$

$$p = P_t - P_0$$

$$P_0 - p = P_0 - \left[P_t - P_0\right]$$

$$= 2 P_0 - P_t$$

For a first order reaction,

$$k = \frac{2.303}{t} \log \frac{P_0}{P_0 - p}$$

$$k = \frac{2.303}{t} \log \frac{P_0}{2P_0 - p_t}$$

When t = 100 s,

$$k = \frac{2.303}{100} \log \frac{0.5}{2 \times 0.5 - 0.6}$$

$$= 2.231 \times 10^{-3} \text{ s}^{-1}$$

When $P_t = 0.65$ atm,

$$P_0 + p = 0.65$$

$$p = 0.65 - P_0$$

$$=0.65-0.5$$

$$= 0.15 atm$$

Thus, when the total pressure = 0.65 atm,

Pressure of SOCl₂ is,
$$p_{SOCl_2} = P_0 - p$$

$$= 0.5 - 0.15$$

$$= 0.35 atm$$

Hence, the rate of equation,

Rate =
$$k (p_{SOCl_2})$$

=
$$(2.23 \times 10^{-3} \text{ s}^{-1}) (0.35 \text{ atm})$$

$$= 7.8 \times 10^{-4} \text{ atm s}^{-1}$$

4.22 The rate constant for the decomposition of N_2O_5 at various temperatures is given below:

T/°C	0	20	40	60	80
$10^5 \times k/ \text{ s}^{-1}$	0.0787	1.70	25.7	178	2140

Draw a graph between $\ln k$ and 1/T and calculate the values of A and $E_{\rm a}$. Predict the rate constant at 30° and 50°C.

Answer 4.22

We have,

T/°C	0	20	40	60	80
T/K	273	293	313	333	353
$\frac{1}{T}$	3.66×10^{-3}	3.41×10^{-3}	3.19×10 ⁻³	3.0×10^{-3}	2.83×10^{-3}
10^5	0.0787	1.70	25.7	178	2140
ln k	-7.147	-4.075	-1.359	-0.577	3.063

Slope of the line =
$$\frac{y_2 - y_1}{x_2 - x_1} = -12.301 \, K$$

Arrhenius equation,

$$slope = -\frac{E_a}{R}$$

$$E_a = -slope \times R$$

$$=-(2.301)\times8.314$$

$$= 102.27 \ kj \ / \ mol$$

Again,

$$\ln k = \ln A - \frac{E_a}{RT}$$

$$\ln A = \ln k + \frac{E_a}{RT}$$

$$T = 273 \text{ K}$$

$$\ln k = -7.147$$

$$\ln A = -7.147 + \frac{102.27 \times 10^3}{8.314 \times 273}$$

$$= 37.91$$

$$A = 2.91 \times 10^6$$

$$T = 30 + 273K$$

$$= 303 K$$

$$\frac{1}{T} = 0.0033K = 3.3 \times 10^{-3} K$$

$$\ln k = -2.88$$

$$k = 6.08 \times 10^{-2} \,\mathrm{sec}^{-1}$$

$$T = 50 + 273 = 323K$$

$$\frac{1}{T} = 0.0031K = 3.1 \times 10^{-3} K$$

$$\ln k = -0.5$$

$$k = 0.607 \,\mathrm{sec}^{-1}$$

Get SOLVED & UNSOLVED question papers, updated Syllabus, Sample papers and study material and much more...

Simplifying Test Prep

4.23 The rate constant for the decomposition of hydrocarbons is $2.418 \times 10^{-5} \, \text{s}^{-1}$ at 546 K. If the energy of activation is 179.9 kJ / mol, what will be the value of preexponential factor?

Answer 4.23

$$E_{\rm a} = 179.9 \text{ kJ mol}^{-1} = 179.9 \times 10^3 \text{ J mol}^{-1}$$

$$k = 2.418 \times 10^{-5} \text{ s}^{-1}$$

$$T = 546 \text{ K}$$

Using Arrhenius equation,

$$k = Ae^{-E_a/RT}$$

$$\ln k = \ln A - \frac{E_a}{RT}$$

$$\log k = \log A - \frac{E_a}{2.303RT}$$

$$\log A = \log k + \frac{E_a}{2.303RT}$$

$$= \log(2.418 \times 10^{-5}) + \frac{179.9 \times 10^{3}}{2.303 \times 8.314 \times 546}$$

$$= (0.3835 - 5) + 17.2082$$

$$= 12.5917$$

$$A = antilog (12.5917)$$

$$= 3.9 \times 10^{12} \,\mathrm{s}^{-1} \,\mathrm{(approx.)}$$

4.24 Consider a certain reaction $A \to Products$ with $k = 2.0 \times 10^{-2} \, s^{-1}$. Calculate the concentration of A remaining after 100 s if the initial concentration of A is 1.0 mol L^{-1} .

Answer 4.24

$$[A]_{o} = 1.0 \text{ moL}^{-1}$$

$$k = 2.0 \times 10^{-2} \text{ s}^{-1}$$

$$T = 100 \text{ s}$$

The unit of $k = s^{-1}$, therefore, the given reaction is a first order reaction.

$$k = \frac{2.303}{t} \log \frac{\left[A\right]_0}{\left[A\right]}$$

$$2 \times 10^{-2} = \frac{2.303}{100} \log \frac{1}{A}$$

$$2 \times 10^{-2} = \frac{2.303}{100} \left[-\log A \right]$$

$$\left[-\log A\right] = \frac{2 \times 10^{-2} \times 100}{2.303}$$

$$[A] = anti \log \left[-\frac{2 \times 10^{-2} \times 100}{2.303} \right]$$

$$[A] = anti \log \left[-\frac{2}{2.303} \right]$$

$$= 0.135 \text{ mol L}^{-1} \text{ (approx.)}$$

Thus, the remaining concentration of A is 0.135 mol/ L.

4.25 Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with $t_{1/2} = 3.00$ hours. What fraction of sample of sucrose remains after 8 hours?

Answer 4.25

Given, $t_{1/2} = 3.00$ hours

For a first order reaction,

$$k = \frac{0.693}{t_{1/2}}$$

$$= \frac{0.693}{3}$$

$$= 0.231 \text{ h}^{-1}$$

$$= 0.231 \text{ h}^{-1}$$

Now,

$$k = \frac{2.303}{t} \log \frac{\left[R\right]_0}{\left[R\right]}$$

$$0.231 = \frac{2.303}{8h} \log \frac{[R]_0}{[R]}$$

$$\log \frac{\left[R\right]_0}{\left[R\right]} = \frac{0.231 \times 8}{2.303}$$

$$\frac{\left[R\right]_0}{\left[R\right]} = anti\log(0.8024)$$

$$\frac{\left[R\right]_0}{\left[R\right]} = 6.3445$$

$$\frac{\left[R\right]_0}{\left[R\right]} = 0.158$$

Thus, the fraction of sample of sucrose that remains after 8 hours is 0.158.

4.26 The decomposition of hydrocarbon follows the equation

$$k = (4.5 \times 10^{11} \,\mathrm{s}^{-1}) \,\mathrm{e}^{-28000 \,\mathrm{K}/T}$$

Calculate E_a .

Answer 4.26

We have

$$k = (4.5 \times 10^{11} \,\mathrm{s}^{-1}) \,\mathrm{e}^{-28000 \,\mathrm{K/T}}.....(1)$$

Arrhenius equation is,

$$k = Ae^{-E_a/RT} \dots (2)$$

On comparing both the equations, we get

$$\frac{E_a}{RT} = \frac{28000K}{T}$$

$$E_a = 8.314 \times 28000 \text{ K}$$

$$= 232792 \text{ J/mol}$$

$$= 232.792 \text{ kJ} / \text{mol}$$

4.27 The rate constant for the first order decomposition of H₂O₂ is given by the following equation:

$$\text{Log } k = 14.34 - 1.25 \times 10^4 \, \text{K/}T$$

Calculate E_a for this reaction and at what temperature will its half-period be 256 minutes?

Answer 4.27

Arrhenius equation is,

$$k = Ae^{-E_a/RT}$$

$$k = Ae^{-E_a/R}$$

$$\ln k = \ln A - \frac{E_a}{RT}$$

$$\log k = \log A - \frac{E_a}{2.303RT}...(1)$$

Given equation is,

$$\log k = 14.34 - 1.25 \times 10^4 \ K / T....(2)$$

On comparing both equations, we get

$$\frac{E_a}{2.303RT} = \frac{1.25 \times 10^4 K}{T}$$

$$E_a = 1.25 \times 10^4 \text{ K} \times 2.303 \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$= 239.34 \text{ kJ mol}^{-1}$$

Now, $t_{1/2} = 256$ minutes,

$$k = \frac{0.693}{t_{1/2}}$$
$$= \frac{0.693}{256}$$

$$= 2.707 \times 10^{-3} \text{ min}^{-1}$$

$$=4.51\times10^{-5} \text{ s}^{-1}$$

We have, $\log k = 14.34 - 1.25 \times 10^4 \text{ K/}T$

$$\log \left[4.51 \times 10^{-5} \right] = 14.34 - \frac{1.25 \times 10^4 K}{T}$$

$$[0.654 - 5] = 14.34 - \frac{1.25 \times 10^4 K}{T}$$

$$\frac{1.25 \times 10^4 K}{T} = 18.686$$

$$T = 669K$$

4.28 The decomposition of A into product has value of k as 4.5×10^3 s⁻¹ at 10° C and energy of activation 60 kJ mol⁻¹. At what temperature would k be 1.5×10^4 s⁻¹?

Answer 4.20

$$k_1 = 4.5 \times 10^3 \text{ s}^{-1}$$

$$k_2 = 1.5 \times 10^4 \text{ s}^{-1}$$

$$T_1 = 273 + 10 = 283 \text{ K}$$

$$E_a = 60 \text{ kJ mol}^{-1} = 6.0 \times 10^4 \text{ J mol}^{-1}$$

Using Arrhenius equation,

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

$$\log \frac{1.5 \times 10^4}{4.5 \times 10^3} = \frac{6 \times 10^4}{2.303 \times 8.314} \left[\frac{T_2 - 283}{283T_2} \right]$$

$$0.5229 = 3133.627 \left[\frac{T_2 - 283}{283T_2} \right]$$

$$T_2 = 297 \ K$$

$$= 24$$
°C

4.29 The time required for 10% completion of a first order reaction at 298 K is equal to that required for its 25% completion at 308 K. The value of A is 4×10^{10} s⁻¹. Calculate k at 318 K and E_a .

Answer 4.29

For a first order reaction,

$$t = \frac{2.303}{k} \log \frac{a}{a - x}$$

At 298 K

$$t = \frac{2.303}{k} \log \frac{100}{90}$$
$$= \frac{0.1054}{k}$$

At 308 K,

$$t' = \frac{2.303}{k'} \log \frac{100}{75}$$
$$= \frac{0.2877}{k'}$$

Now, as per the question

$$t' = t$$

$$\frac{0.1054}{k} = \frac{0.2877}{k'}$$

$$\frac{k'}{k} = 2.7296$$

From Arrhenius equation,

$$\log \frac{k'}{k} = \frac{E_a}{2.303R} \left[\frac{T' - T}{TT'} \right]$$

$$\log 2.7296 = \frac{E_a}{2.303 \times 8.314} \left[\frac{308 - 298}{298 \times 308} \right]$$

$$E_a = \frac{2.303 \times 8.314 \times 298 \times 308 \times \log 2.7296}{10}$$

$$= 76.64 \text{ kj / mol}$$

Now we can calculate *k* at 318 K,

We have

$$A = 4 \times 10^{10} \,\mathrm{sec}^{-1}$$
$$T = 318 \, K$$

Again, use Arrhenius equation,

$$\log k = \log A - \frac{E_a}{2.303RT}$$

$$= \log \left(4 \times 10^{10}\right) - \frac{76.64 \times 10^3}{2.303 \times 8.314 \times 318}$$

$$= 10.6021 - 12.5876$$

$$= -1.9855$$

Thus,

$$k = anti \log(-1.9855)$$

= 1.034 × 10⁻² sec⁻¹

4.30 The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature.

Answer 4.30

$$k_2 = 4k_1$$
 $T_1 = 293 K$
 $T_2 = 313 K$

From Arrhenius equation,

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

Simplifying Test Prep

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

$$\log \frac{4k_1}{k_1} = \frac{E_a}{2.303 \times 8.314} \left[\frac{313 - 293}{293 \times 313} \right]$$

$$0.6021 = \frac{20 \times E_a}{2.303 \times 8.314 \times 293 \times 313}$$

$$E_a = 52863.33 J / mol$$

= $52.86 kj / mol$