Chapter 2
 Polynomials

Exercise: 2.1

Question 1: Find the number of zeroes of $p(x)$, in each case.
Solution:
(i)

No. of zeroes $=0$ as graph doesn't intersect at x-axis
(ii)

No. of zeroes $=1$ as graph intersect x-axis once

CBSE Class 10th NCERT Solution: Mathematics

(iii)

No. of zeroes $=3$ as graph intersect x-axis three times.
(iv)

No. of zeroes $=2$ as graph intersect x-axis two times.
(v)

No. of zeroes $=4$ as graph intersect x-axis four times.

CBSE Class 10th NCERT Solution: Mathematics

(vi)

No. of zeroes $=0$ as graph doesn't intersect at x-axis

Exercise: 2.2

Question 1: Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

Solution:
(i)

$$
\begin{aligned}
& x^{2}-2 x-8 \\
& \text { Let } \\
& x^{2}-2 x-8=0 \\
& x^{2}-4 x+2 x-8=0 \\
& x(x-4)+2(x-4)=0 \\
& (x-4)(x+2)=0 \\
& x=4,-2
\end{aligned}
$$

General equation can be represented as:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x^{2}-2 x-8=0 \\
& a=1, b=-2, c=-8
\end{aligned}
$$

CBSE Class 10th NCERT Solution: Mathematics

Now, we will verify the roots

$$
\begin{aligned}
& \alpha+\beta=-\frac{b}{a} \\
& 4-2=-\frac{(-2)}{1} \\
& 2=2
\end{aligned}
$$

(ii)
$4 s^{2}-4 s+1$

Let
$4 s^{2}-4 s+1=0$
$4 s^{2}-2 s-2 s+1=0$
$2 s(2 s-1)-1(2 s-1)=0$
$(2 s-1)(2 s-1)=0$
$s=\frac{1}{2}, \frac{1}{2}$

General equation can be represented as:

$$
\begin{aligned}
& a s^{2}+b s+c=0 \\
& 4 s^{2}-4 s+1=0 \\
& a=4, b=-4, c=1
\end{aligned}
$$

Now, we will verify the roots
$\alpha+\beta=-\frac{b}{a}$
$\frac{1}{2}+\frac{1}{2}=-\frac{(-4)}{4}$
$1=1$
(iii)
$6 x^{2}-3-7 x$
On rearanging the equation:
$6 x^{2}-7 x-3$
Let
$6 x^{2}-7 x-3=0$
$6 x^{2}-9 x+2 x-3=0$
$3 x(2 x-3)+1(2 x-3)=0$
Get Practice Papers, Solved Question Papers, Syllabus, Sample Papers, Expert's video, Online Test and much more....

CBSE Class 10th NCERT Solution: Mathematics

$$
\begin{aligned}
& (3 x+1)(2 x-3)=0 \\
& x=-\frac{1}{3}, \frac{3}{2}
\end{aligned}
$$

General equation can be represented as:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& 6 x^{2}-7 x-3=0 \\
& a=6, b=-7, c=-3
\end{aligned}
$$

Now, we will verify the roots
$\alpha+\beta=-\frac{b}{a}$
$-\frac{1}{3}+\frac{3}{2}=-\frac{(-7)}{6}$
$\frac{-2+9}{6}=\frac{7}{6}$
$\frac{7}{6}=\frac{7}{6}$
(iv)

$$
4 u^{2}+8 u
$$

Let
$4 u^{2}+8 u=0$
$4 u(u+2)=0$
$u=0,-2$

General equation can be represented as:

$$
\begin{aligned}
& a u^{2}+b u+c=0 \\
& 4 u^{2}+8 u=0 \\
& a=4, b=8, c=0
\end{aligned}
$$

Now, we will verify the roots

$$
\begin{aligned}
& \alpha+\beta=-\frac{b}{a} \\
& 0-2=-\frac{(8)}{4} \\
& -2=-2
\end{aligned}
$$

CBSE Class 10th NCERT Solution: Mathematics

(v)
$t^{2}-15$

Let
$t^{2}-15=0$
$t^{2}=15$
$t= \pm \sqrt{15}$
General equation can be represented as:

$$
\begin{aligned}
& a t^{2}+b t+c=0 \\
& t^{2}-15=0 \\
& a=1, b=0, c=-15
\end{aligned}
$$

Now, we will verify the roots
$\alpha+\beta=-\frac{b}{a}$
$\sqrt{15}-\sqrt{15}=-\frac{0}{1}$
$0=0$
(vi)
$3 x^{2}-x-4$

Let
$3 x^{2}-x-4=0$
$3 x^{2}-4 x+3 x-4=0$
$x(3 x-4)+1(3 x-4)=0$
$(3 x-4)(x+1)=0$
$x=-1, \frac{4}{3}$
General equation can be represented as:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& 3 x^{2}-x-4=0 \\
& a=3, b=-1, c=-4
\end{aligned}
$$

CBSE Class 10th NCERT Solution: Mathematics

Now, we will verify the roots

$$
\begin{aligned}
& \alpha+\beta=-\frac{b}{a} \\
& -1+\frac{4}{3}=-\frac{(-1)}{3} \\
& \frac{-3+4}{3}=\frac{1}{3} \\
& \frac{1}{3}=\frac{1}{3}
\end{aligned}
$$

Question 2: Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

Solution:

(i)

Let $\alpha+\beta$ are the zeroes of a quadratic polynomial
Now,
We have,

$$
\begin{aligned}
& \alpha+\beta=\frac{1}{4}, \quad \alpha \beta=-1 \\
& \alpha+\beta=\frac{1}{4} \\
& \frac{-b}{a}=\frac{1}{4} \\
& \frac{b}{a}=-\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha \beta=-1 \\
& \frac{c}{a}=-1 \\
& \frac{c}{a}=-\frac{4}{4}
\end{aligned}
$$

Thus,

$$
a=-4, b=1, c=4
$$

CBSE Class 10th NCERT Solution: Mathematics

Equation is:

$$
\begin{aligned}
& -4 x^{2}+x+4=0 \\
& 4 x^{2}-x-4=0
\end{aligned}
$$

(ii)

Let $\alpha+\beta$ are the zeroes of a quadratic polynomial Now,

We have,

$$
\begin{aligned}
& \alpha+\beta=\sqrt{2}, \quad \alpha \beta=\frac{1}{3} \\
& \alpha+\beta=\sqrt{2} \\
& -\frac{b}{a}=\sqrt{2} \\
& \frac{b}{a}=-\frac{3 \sqrt{2}}{3} \\
& \alpha \beta=\frac{1}{3} \\
& \frac{c}{a}=\frac{1}{3}
\end{aligned}
$$

Thus,

$$
a=3, b=-3 \sqrt{2}, c=1
$$

Equation is

$$
3 x^{2}-3 \sqrt{2}+1=0
$$

(iii)

Let $\alpha+\beta$ are the zeroes of a quadratic polynomial Now,

We have,

$$
\begin{aligned}
& \alpha+\beta=0, \quad \alpha \beta=\sqrt{5} \\
& \alpha+\beta=0 \\
& \frac{-b}{a}=0
\end{aligned}
$$

CBSE Class 10th NCERT Solution: Mathematics

$$
\begin{aligned}
& \frac{-b}{a}=\frac{0}{1} \\
& \alpha \beta=\sqrt{5} \\
& \frac{c}{a}=\frac{\sqrt{5}}{1}
\end{aligned}
$$

Thus,

$$
a=1, b=0, c=\sqrt{5}
$$

Equation is

$$
\begin{aligned}
& x^{2}+0 x+\sqrt{5}=0 \\
& x^{2}+\sqrt{5}=0
\end{aligned}
$$

(iv)

Let $\alpha+\beta$ are the zeroes of a quadratic polynomial Now,
We have,

$$
\begin{aligned}
& \alpha+\beta=1, \quad \alpha \beta=1 \\
& \alpha+\beta=1 \\
& \frac{-b}{a}=1 \\
& \frac{b}{a}=-\frac{1}{1} \\
& \alpha \beta=1 \\
& \frac{c}{a}=\frac{1}{1}
\end{aligned}
$$

Thus,

$$
a=1, b=-1, c=1
$$

Equation is

$$
x^{2}-x+1=0
$$

CBSE Class 10th NCERT Solution: Mathematics

(v)

Let $\alpha+\beta$ are the zeroes of a quadratic polynomial Now,

We have,

$$
\begin{aligned}
& \alpha+\beta=-\frac{1}{4}, \quad \alpha \beta=\frac{1}{4} \\
& \alpha+\beta=-\frac{1}{4} \\
& \frac{-b}{a}=-\frac{1}{4} \\
& \frac{b}{a}=\frac{1}{4} \\
& \alpha \beta=\frac{1}{4} \\
& \frac{c}{a}=\frac{1}{4}
\end{aligned}
$$

Thus,

$$
a=4, b=1, c=1
$$

Equation is

$$
4 x^{2}+x+1=0
$$

(vi)

Let $\alpha+\beta$ are the zeroes of a quadratic polynomial Now,

We have,

$$
\begin{aligned}
& \alpha+\beta=4, \quad \alpha \beta=1 \\
& \alpha+\beta=4 \\
& \frac{-b}{a}=4 \\
& \frac{b}{a}=-\frac{4}{1} \\
& \alpha \beta=1 \\
& \frac{c}{a}=\frac{1}{1}
\end{aligned}
$$

CBSE Class 10th NCERT Solution: Mathematics

Thus,

$$
a=1, b=-4, c=1
$$

Equation is

$$
x^{2}-4 x+1=0
$$

Exercise: 2.3

Question 1: Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each of the following:

Solution:

(i)
$p(x)=x^{3}-3 x^{2}+5 x-3$
$g(x)=x^{2}-2$
$x ^ { 2 } - 2 \longdiv { x ^ { 3 } - 3 x ^ { 2 } + 5 x - 3 }$
\qquad

$$
\begin{aligned}
& -3 x^{2}+7 x-3 \\
& +-3 x^{2} \quad+6
\end{aligned}
$$

$$
7 x-9
$$

Quotient $=x-3$
Reminder $=7 x-9$
(ii)

$$
\begin{aligned}
& p(x)=x^{4}-3 x^{2}+4 x+5 \\
& g(x)=x^{2}+1-x
\end{aligned}
$$

$$
\frac{x^{2}+x-3}{x ^ { 2 } + 1 - x \longdiv { x ^ { 4 } - 3 x ^ { 2 } + 4 x + 5 }} \begin{array}{r}
x_{-}^{4}+x^{2}-4 x^{2}+4 x+5 \\
{ }_{-} x^{3}-x^{2}+x \\
+-3 x^{2}+3 x+5 \\
+-3 x_{-}^{2}+3 x_{+}-3
\end{array}
$$

Quotient $=x^{2}+x-3$
Reminder $=8$
(iii)
$p(x)=x^{4}-5 x+6$
$g(x)=2-x^{2}=-x^{2}+2$
$- x ^ { 2 } + 2 \longdiv { x ^ { 4 } - 5 x + 6 }$

$\frac{-x^{4} \quad-2 x^{2}}{2 x^{2}-5 x+6}$| $2 x^{3} \quad{ }^{-4}$ |
| :--- |

$$
-5 x+10
$$

Quotient $=-x^{2}-2$
Reminder $=-5 x+10$

CBSE Class 10th NCERT Solution: Mathematics

Question 2: Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

Solution:

(i)

$$
\begin{aligned}
& p(x)=t^{2}-3 \\
& g(x)=2 t^{4}+3 t^{3}-2 t^{2}-9 t-12 \\
& t ^ { 2 } - 3 \longdiv { 2 t ^ { 4 } + 3 t ^ { 3 } - 2 t ^ { 2 } - 9 t - 1 2 } \begin{array} { r }
{ 2 t ^ { 4 } + - 6 t ^ { 2 } } \\
{ - 4 t ^ { 2 } + 3 t ^ { 3 } - 9 t - 1 2 } \\
{ - 4 t ^ { 2 } + - 1 2 } \\
{ - 3 t ^ { 3 } - 9 t } \\
{ - 9 t }
\end{array}
\end{aligned}
$$

Quotient $=2 t^{2}+4+3 t$
Reminder $=0$

Thus, first polynomial is a factor of the second polynomial.
(ii)

$$
\begin{aligned}
& p(x)=x^{2}+3 x+1 \\
& g(x)=3 x^{4}+5 x^{3}-7 x^{2}+2 x+2
\end{aligned}
$$

$$
\begin{aligned}
& x ^ { 2 } + 3 x + 1 \longdiv { 3 x ^ { 4 } + 5 x ^ { 3 } - 7 x ^ { 2 } + 2 x + 2 } \\
& \text { _ } 3 x^{4}{ }_{-}+9 x^{3}+{ }_{-} 9 x^{2} \\
& -4 x^{3}-16 x^{2}+2 x+2 \\
& { }_{+}-4 x^{3}{ }_{+}-12 x^{2}{ }_{+}-4 x \\
& -4 x^{2}+6 x+2 \\
& { }_{+}-4 x^{2}{ }_{+}-12 x_{+}-4 \\
& 18 x+6
\end{aligned}
$$

$$
\begin{aligned}
& \text { Quotient }=3 x^{2}-4 x-4 \\
& \text { Reminder }=18 x+6
\end{aligned}
$$

Thus, first polynomial is not a factor of the second polynomial
(iii)

$$
\begin{aligned}
& p(x)=x^{2}-3 x+1 \\
& g(x)=x^{5}-4 x^{3}+x^{2}+3 x+1 \\
& x ^ { 2 } - 3 x + 1 \longdiv { x ^ { 3 } + 3 x ^ { 2 } - 4 x - 1 4 } \\
& { }_{-} x^{5}{ }_{-}+x^{3} \quad+-3 x^{4} \\
& 3 x^{4}-5 x^{3}+x^{2}+3 x+1 \\
& { }_{-} 3 x^{4}{ }_{+}-9 x^{3}{ }_{-}+3 x^{2} \\
& -4 x^{3}-2 x^{2}+3 x+1 \\
& { }_{+}-4 x^{3}{ }_{-}+12 x^{2}{ }_{+}-4 x \\
& -14 x^{2}+7 x+1 \\
& { }_{+}-14 x^{2}{ }_{-}+42 x_{+}-14 \\
& -35 x+15
\end{aligned}
$$

CBSE Class 10th NCERT Solution: Mathematics

Quotient $=x^{3}+3 x^{2}-4 x-14$
Reminder $=-35 x+15$

Thus, first polynomial is not a factor of the second polynomial.

Question 3: Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

Solution:

$$
p(x)=3 x^{4}+6 x^{3}-2 x^{2}-10 x-5
$$

Now, $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ are the two zeroes of the given polynomial.
Thus, $\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=\left(x^{2}-\frac{5}{3}\right)$ is a factor of given polynomial
Let $g(x)=\left(x^{2}-\frac{5}{3}\right)$
On division,

$$
\begin{array}{r}
x^{2}-\frac{5}{3} \begin{array}{r}
3 x^{2}+6 x+3 \\
-6 x^{3}-2 x^{2}-10 x-5 \\
\frac{3 x^{4}-5 x^{2}}{6 x^{3}+3 x^{2}-10 x-5} \\
-6 x^{3}+-10 x
\end{array} \\
\frac{3 x^{2}-5}{3 x^{2}-5}
\end{array}
$$

CBSE Class 10th NCERT Solution: Mathematics

Thus,

$$
\begin{aligned}
& 3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=\left(x^{2}-\frac{5}{3}\right)\left(3 x^{2}+6 x+3\right) \\
& 3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=3\left(x^{2}-\frac{5}{3}\right)\left(x^{2}+2 x+1\right) \\
& 3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=3\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)(x+1)^{2}
\end{aligned}
$$

Hence,
Zeroes of the polynomial are $=\sqrt{\frac{5}{3}},-\sqrt{\frac{5}{3}},-1,-1$

Question 4: On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.

Solution:

$p(x)=x^{3}-3 x^{2}+x+2$
$g(x)=$?
Quotient $=x-2$
Remainder $=-2 x+4$
We know that,
$p(x)=g(x) \times$ Quotient + Remainder
$x^{3}-3 x^{2}+x+2=g(x) \times(x-2)-2 x+4$
$x^{3}-3 x^{2}+x+2+2 x-4=g(x) \times(x-2)$
$g(x) \times(x-2)=x^{3}-3 x^{2}+3 x-2$
$g(x)=\frac{x^{3}-3 x^{2}+3 x-2}{x-2}$
Now,

$$
\begin{gathered}
x - 2 \longdiv { x ^ { 2 } - x + 1 } \\
x_{-} x^{3}-3 x^{2}+3 x-2 x^{2}
\end{gathered}
$$

CBSE Class 10th NCERT Solution: Mathematics

$$
\begin{gathered}
-x^{2}+3 x-2 \\
+x^{2}+2 x \\
\hline \begin{array}{c}
x-2 \\
-x_{+}-2
\end{array} \\
\hline 0
\end{gathered}
$$

Thus,
$g(x)=x^{2}-x+1$

Exercise: 2.4

Question 1: Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

Solution:
(i)

$$
2 x^{3}+x^{2}-5 x+2 ; \quad \frac{1}{2}, 1,-2
$$

On comparing coefficients, we got

$$
a=2, b=1, c=-5, d=2
$$

Let,

$$
\begin{aligned}
& y=2 x^{3}+x^{2}-5 x+2 \\
& y\left(x=\frac{1}{2}\right)=2 \cdot \frac{1}{8}+\frac{1}{4}-\frac{5}{2}+2=0 \\
& y(x=1)=2+1-5+2=0 \\
& y(x=-2)=-16+4+10+2=0
\end{aligned}
$$

Thus, all three values of x are the zeroes of the given polynomial

CBSE Class 10th NCERT Solution: Mathematics

Now,

$$
\begin{aligned}
& \alpha+\beta+\gamma=-\frac{b}{a} \\
& \frac{1}{2}+1-2=-\frac{1}{2} \\
& -\frac{1}{2}=-\frac{1}{2} \\
& \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a} \\
& \frac{1}{2}-2-1=-\frac{5}{2} \\
& -\frac{5}{2}=-\frac{5}{2} \\
& \alpha \beta \gamma=-\frac{d}{a} \\
& \frac{1}{2} .1 .(-2)=-1 \\
& -1=-1
\end{aligned}
$$

(ii)

$$
x^{3}-4 x^{2}+5 x-2 ; 2,1,1
$$

On comparing coefficients, we got

$$
a=1, b=-4, c=5, d=-2
$$

Let

$$
\begin{aligned}
& y=x^{3}-4 x^{2}+5 x-2 \\
& y(x=2)=8-16+10-2=0 \\
& y(x=1)=1-4+5-2=0 \\
& y(x=1)=1-4+5-2=0
\end{aligned}
$$

Thus, all three values of x are the zeroes of the given polynomial

CBSE Class 10th NCERT Solution: Mathematics

Now,

$$
\begin{aligned}
& \alpha+\beta+\gamma=-\frac{b}{a} \\
& 2+1+1=4 \\
& 4=4 \\
& \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a} \\
& 2+1+2=5 \\
& 5=5 \\
& \alpha \beta \gamma=-\frac{d}{a} \\
& 2=2
\end{aligned}
$$

Question 2: Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as $2,-7,-14$ respectively.

Solution:

Given

$$
\begin{aligned}
& \alpha+\beta+\gamma=2 \\
& \alpha \beta+\beta \gamma+\alpha \gamma=-7 \\
& \alpha \beta \gamma=-14
\end{aligned}
$$

$$
\begin{aligned}
& \alpha+\beta+\gamma=2 \\
& -\frac{b}{a}=\frac{2}{1}
\end{aligned}
$$

$$
\alpha \beta+\beta \gamma+\alpha \gamma=-7
$$

$$
\frac{c}{a}=\frac{-7}{1}
$$

CBSE Class 10th NCERT Solution: Mathematics

$$
\begin{aligned}
& \alpha \beta \gamma=-14 \\
& \frac{d}{a}=\frac{-14}{1}
\end{aligned}
$$

We got,

$$
a=1, b=-2, c=-7, d=-14
$$

Thus, polynomial will be:

$$
\begin{aligned}
& a x^{3}+b x^{2}+c x+d=0 \\
& x^{3}-2 x^{2}-7 x-14=0
\end{aligned}
$$

Question 3: If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b, a, a+b$, find a and b.
Solution:
Let

$$
y=x^{3}-3 x^{2}+x+1
$$

On comparing,

$$
a=1, b=-3, c=1, d=1
$$

$$
\begin{aligned}
& \text { Zeroes }=a-b, a, a+b \\
& \begin{array}{l}
\alpha+\beta+\gamma=-\frac{b}{a} \\
\\
a-b+a+a+b=3 \\
\\
3 a=3 \\
a=1 \\
\alpha \beta \gamma=-\frac{d}{a} \\
a(a-b)(a+b)=-1 \\
a\left(a^{2}-b^{2}\right)=-1 \\
1\left(1-b^{2}\right)=-1 \\
1-b^{2}=-1 \\
b^{2}=2 \Rightarrow b= \pm \sqrt{2}
\end{array}
\end{aligned}
$$

CBSE Class 10th NCERT Solution: Mathematics

Thus,

$$
a=1, b= \pm \sqrt{2}
$$

Question 4: If two zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$, find other zeroes.

Solution:
Let

$$
y=x^{4}-6 x^{3}-26 x^{2}+138 x-35
$$

$$
\text { Zeroes }=2 \pm \sqrt{3}
$$

$$
\alpha+\beta+\gamma+\delta=6
$$

$$
2+\sqrt{3}+2-\sqrt{3}+\gamma+\delta=6
$$

$$
\gamma+\delta=2
$$

$\alpha \beta \gamma \delta=-35$
$(2+\sqrt{3})(2-\sqrt{3}) \gamma \delta=-35$
$(4-3) \gamma \delta=-35$
$\gamma \delta=-35$
Now,

$$
\begin{align*}
& \gamma+\delta=2 \\
& \gamma=2-\delta \tag{1}
\end{align*}
$$

$$
\gamma \delta=-35
$$

$(2-\delta) \delta=-35$
$2 \delta-\delta^{2}+35=0$
$\delta^{2}-2 \delta-35=0$
$\delta^{2}-7 \delta+5 \delta-35=0$
$\delta(\delta-7)+5(\delta-7)=0$
$(\delta-7)(\delta+5)=0$
$\delta=7,-5$

CBSE Class 10th NCERT Solution: Mathematics

$$
\begin{aligned}
& \gamma=2-\delta \\
& \gamma=2-7=-5
\end{aligned}
$$

Hence, two other zeroes are 7 and -5 .

Question 5: If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial x^{2} $-2 x+k$, the remainder comes out to be $x+a$, find k and a.

Solution:
Let

$$
y=x^{4}-6 x^{3}+16 x^{2}-25 x+10
$$

Now,

$$
\begin{gathered}
x^{4}-6 x^{3}+16 x^{2}-25 x+10=\left(x^{2}-2 x+k\right) Q+x+a \\
x ^ { 2 } - 2 x + k \longdiv { x ^ { 4 } - 6 x ^ { 3 } + 1 6 x ^ { 2 } - 2 5 x + 1 0 } \\
\frac{x^{4}{ }_{+}-2 x^{3}{ }_{-}+k x^{2}}{{ }^{-4 x^{3}+(16-k) x^{2}-25 x+10}} \\
+-4 x^{3}+8 x^{2} \quad-4 k x
\end{gathered}
$$

$$
\begin{aligned}
& (8-k) x^{2}+(-25+4 k) x+10 \\
& (8-k) x^{2}{ }_{+}-(16-2 k) x_{-}+k(8-k)
\end{aligned}
$$

$$
(-9+2 k) x+10-8 k+k^{2}
$$

Now,

$$
\begin{aligned}
& Q=x^{2}-4 x+8-k \\
& R=(-9+2 k) x+10-8 k+k^{2} \\
& \qquad x+a=(-9+2 k) x+10-8 k+k^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 1=-9+2 k \\
& 2 k=10 \\
& k=5 \\
& a=10-8 k+k^{2} \\
& a=10-40+25 \\
& a=-5
\end{aligned}
$$

Thus,

$$
a=-5, k=5
$$

[^0]
[^0]: Copyright ©Jagranjosh.com
 All rights reserved. No part or the whole of this eBook may be copied, reproduced, stored in retrieval system or transmitted and/or cited anywhere in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the written permission of the copyright owner. If any misconduct comes in knowledge or brought in notice, strict action will be taken.

