Chapter 10 Circles

Exercise: 10.1

Question 1: How many tangents can a circle have?

Solution: A circle can have infinite tangents.

Question 2: Fill in the blanks:
A tangent to a circle intersects it in \qquad point (s).

A line intersecting a circle in two points is called a \qquad .

A circle can have \qquad parallel tangents at the most.

The common point of a tangent to a circle and the circle is called \qquad .

Solution:
One

Secant

Two
Point of contact

Question 3: A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $\mathrm{OQ}=12 \mathrm{~cm}$. Length PQ is :
(A) 12 cm . (B) 13 cm (C) 8.5 cm (D) $\sqrt{119} \mathrm{~cm}$

Solution: We know that the line drawn from the centre of the circle to the tangent is perpendicular to the tangent.
$\therefore O P \perp P Q$

By applying Pythagoras theorem in $\triangle \mathrm{OPQ}$,

CBSE Class 10th NCERT Solution: Mathematics

$\therefore \mathrm{OP}^{2}+\mathrm{PQ}^{2}=\mathrm{OQ}^{2}$
$5^{2}+\mathrm{PQ}^{2}=12^{2}$
$P Q^{2}=144-25$
$\mathrm{PQ}=\sqrt{119} \mathrm{~cm}$.
Hence, the correct answer is (D).

Question 4: Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Solution:

$A B \square C D$

Line $A B$ is intersecting the circle at exactly two points, P and Q .
Therefore, line AB is the secant of this circle.
Since line CD is intersecting the circle at exactly one point, R , line CD is the tangent to the circle.

CBSE Class 10th NCERT Solution: Mathematics

Exercise: 10.2

Question 1: From a point Q , the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is
(A) 7 cm
(B) 12 cm
(C) 15 cm (D)
(D) 24.5 cm

Solution:

Let O be the centre of the circle.

Given that,
$\mathrm{OQ}=25 \mathrm{~cm}$ and $\mathrm{PQ}=24 \mathrm{~cm}$
$\mathrm{OP} \perp \mathrm{PQ} \quad$ (radius is perpendicular to the tangent at the point of contact)
Applying Pythagoras theorem in $\triangle \mathrm{OPQ}$,
$\mathrm{OP}^{2}+\mathrm{PQ}^{2}=\mathrm{OQ}^{2}$
$\mathrm{OP}^{2}+24^{2}=25^{2}$
$\mathrm{OP}^{2}=625-576$
$\mathrm{OP}^{2}=49$
$\mathrm{OP}=7$
Therefore, the radius of the circle is 7 cm .
Hence, alternative (A) is correct.

Question 2: In the given figure, if TP and TQ are the two tangents to a circle with centre O so that $\angle \mathrm{POQ}=110^{\circ}$, then $\angle \mathrm{PTQ}$ is equal to
(A) 60°
(B) 70°
(C) 80° (D) 90°

CBSE Class 10th NCERT Solution: Mathematics

Solution: It is given that TP and TQ are tangents.
Therefore, radius drawn to these tangents will be perpendicular to the tangents.
Thus, $\mathrm{OP} \perp \mathrm{TP}$ and $\mathrm{OQ} \perp \mathrm{TQ}$
$\angle \mathrm{OPT}=90^{\circ}$
$\angle \mathrm{OQT}=90^{\circ}$
In quadrilateral POQT,
Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{OPT}+\angle \mathrm{POQ}+\angle \mathrm{OQT}+\angle \mathrm{PTQ}=360^{\circ}$
$\Rightarrow 90^{\circ}+110^{\circ}+90^{\circ}+\angle \mathrm{PTQ}=360^{\circ}$
$\Rightarrow \angle \mathrm{PTQ}=70^{\circ}$
Hence, alternative (B) is correct.

Question 3: If tangents PA and PB from a point P to a circle with centre O are inclined to each other an angle of 80°, then $\angle \mathrm{POA}$ is equal to
(A) $50^{\circ}(\mathrm{B}) 60^{\circ}$
(C) 70°
(D) 80°

Solution: It is given that PA and PB are tangents.

Therefore, the radius drawn to these tangents will be perpendicular to the tangents.

CBSE Class 10th NCERT Solution: Mathematics

Thus, $\mathrm{OA} \perp \mathrm{PA}$ and $\mathrm{OB} \perp \mathrm{PB}$
$\angle \mathrm{OBP}=90^{\circ}$
$\angle \mathrm{OAP}=90^{\circ}$
In AOBP,

Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{OAP}+\angle \mathrm{APB}+\angle \mathrm{PBO}+\angle \mathrm{BOA}=360^{\circ}$
$90^{\circ}+80^{\circ}+90^{\circ}+\angle \mathrm{BOA}=360^{\circ}$
$\angle \mathrm{BOA}=100^{\circ}$

In $\triangle \mathrm{OPB}$ and $\triangle \mathrm{OPA}$,
$\mathrm{AP}=\mathrm{BP}($ Tangents from a point $)$
$\mathrm{OA}=\mathrm{OB}$ (Radii of the circle)
$\mathrm{OP}=\mathrm{OP}($ Common side $)$
Therefore, $\Delta \mathrm{OPB} \cong \Delta \mathrm{OPA}$ (SSS congruence criterion)
$\mathrm{A} \leftrightarrow \mathrm{B}, \mathrm{P} \leftrightarrow \mathrm{P}, \mathrm{O} \leftrightarrow \mathrm{O}$
And thus, $\angle \mathrm{POB}=\angle \mathrm{POA}$
$\angle P O A=\frac{1}{2} \angle A O B=\frac{100^{\circ}}{2}=50^{\circ}$
Hence, alternative (A) is correct.

Question 4: Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Solution:

Get Practice Papers, Solved Question Papers, Syllabus, Sample Papers, Expert's video, Online Test and much more....

CBSE Class 10th NCERT Solution: Mathematics

Let AB be a diameter of the circle. Two tangents PQ and RS are drawn at points A and B respectively.

Thus, $\mathrm{OA} \perp \mathrm{RS}$ and $\mathrm{OB} \perp \mathrm{PQ}$
$\angle \mathrm{OAR}=90^{\circ}$
$\angle \mathrm{OAS}=90^{\circ}$
$\angle \mathrm{OBP}=90^{\circ}$
$\angle \mathrm{OBQ}=90^{\circ}$

It can be observed that
$\angle \mathrm{OAR}=\angle \mathrm{OBQ}$ (Alternate interior angles)
$\angle \mathrm{OAS}=\angle \mathrm{OBP}$ (Alternate interior angles)
Since alternate interior angles are equal, lines PQ and RS will be parallel.

Question 5: Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Solution: Let us consider a circle with centre O . Let AB be a tangent which touches the circle at P .

Let us assume that the perpendicular to AB at P does not pass through centre O . Let it pass through another point O^{\prime}.

Join OP and O'P

As perpendicular to AB at P passes through O^{\prime}, therefore,
$\angle \mathrm{O}^{\prime} \mathrm{PB}=90^{\circ}$
Line joining the centre and the point of contact to the tangent of the circle are perpendicular to each other.
Get Practice Papers, Solved Question Papers, Syllabus, Sample Papers, Expert's video, Online Test and much more....

CBSE Class 10th NCERT Solution: Mathematics

$\therefore \angle \mathrm{OPB}=90^{\circ}$
Comparing equations (1) and (2), we obtain
$\angle \mathrm{O}^{\prime} \mathrm{PB}=\angle \mathrm{OPB}$
From the figure, it can be observed that,
$\angle \mathrm{O}^{\prime} \mathrm{PB}<\angle \mathrm{OPB}$
Therefore, $\angle \mathrm{O}^{\prime} \mathrm{PB}=\angle \mathrm{OPB}$ is not possible. It is only possible, when the line $\mathrm{O}^{\prime} \mathrm{P}$ coincides with OP .
Therefore, the perpendicular to AB through P passes through centre O .

Question 6: The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.

Solution:

Let us consider a circle centred at point O .
$A B$ is a tangent drawn on this circle from point A.
Given that,
$\mathrm{OA}=5 \mathrm{~cm}$ and $\mathrm{AB}=4 \mathrm{~cm}$
In $\triangle \mathrm{ABO}$,
$\mathrm{OB} \perp \mathrm{AB} \quad$ (Radius \perp tangent at the point of contact)
Applying Pythagoras theorem in $\triangle \mathrm{ABO}$,
$\mathrm{AB}^{2}+\mathrm{BO}^{2}=\mathrm{OA}^{2}$
$4^{2}+\mathrm{BO}^{2}=5^{2}$
$16+\mathrm{BO}^{2}=25$
$\mathrm{BO}^{2}=9$
$\mathrm{BO}=3$

CBSE Class 10th NCERT Solution: Mathematics

Hence, the radius of the circle is 3 cm .

Question 7: Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Solution:

Let the two concentric circles be centred at point O. And let PQ be the chord of the larger circle which touches the smaller circle at point A. Therefore, PQ is tangent to the smaller circle.
$\mathrm{OA} \perp \mathrm{PQ}$ (As OA is the radius of the circle)

Applying Pythagoras theorem in $\triangle \mathrm{OAP}$, we obtain
$\mathrm{OA}^{2}+\mathrm{AP}^{2}=\mathrm{OP}^{2}$
$3^{2}+\mathrm{AP}^{2}=5^{2}$
$9+\mathrm{AP}^{2}=25$
$\mathrm{AP}^{2}=16$
$\mathrm{AP}=4$
In $\triangle \mathrm{OPQ}$,

Since OA $\perp \mathrm{PQ}$,
$\mathrm{AP}=\mathrm{AQ}$ (Perpendicular from the centre of the circle bisects the chord)
Thus, $\mathrm{PQ}=2 \mathrm{AP}=2 \times 4=8$
Therefore, the length of the chord of the larger circle is 8 cm .

Question 8: A quadrilateral ABCD is drawn to circumscribe a circle (see given figure) Prove that AB $+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$

Solution: It can be observed that
$\mathrm{DR}=\mathrm{DS}($ Tangents on the circle from point D$) \ldots(1)$
$\mathrm{CR}=\mathrm{CQ}$ (Tangents on the circle from point C)
$\mathrm{BP}=\mathrm{BQ}($ Tangents on the circle from point B$) \ldots(3)$
$\mathrm{AP}=\mathrm{AS}$ (Tangents on the circle from point A$) \ldots$ (4)
Adding all these equations, we obtain
$\mathrm{DR}+\mathrm{CR}+\mathrm{BP}+\mathrm{AP}=\mathrm{DS}+\mathrm{CQ}+\mathrm{BQ}+\mathrm{AS}$
$(\mathrm{DR}+\mathrm{CR})+(\mathrm{BP}+\mathrm{AP})=(\mathrm{DS}+\mathrm{AS})+(\mathrm{CQ}+\mathrm{BQ})$
$C D+A B=A D+B C$

Question 9: In the given figure, XY and $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and $\mathrm{X}^{\prime} Y^{\prime}$ at B . Prove that $\angle \mathrm{AOB}=90$。

Solution: Let us join point O to C.

Get Practice Papers, Solved Question Papers, Syllabus, Sample Papers, Expert's video, Online Test and much more...

In $\triangle \mathrm{OPA}$ and $\triangle \mathrm{OCA}$,
$\mathrm{OP}=\mathrm{OC}($ Radii of the same circle $)$
$\mathrm{AP}=\mathrm{AC}($ Tangents from point A$)$
$\mathrm{AO}=\mathrm{AO}($ Common side $)$
$\Delta \mathrm{OPA} \cong \Delta \mathrm{OCA}(\mathrm{SSS}$ congruence criterion)
Therefore, $\mathrm{P} \leftrightarrow \mathrm{C}, \mathrm{A} \leftrightarrow \mathrm{A}, \mathrm{O} \leftrightarrow \mathrm{O}$
$\angle \mathrm{POA}=\angle \mathrm{COA} \ldots(i)$
Similarly, $\triangle \mathrm{OQB} \cong \triangle \mathrm{OCB}$
$\angle \mathrm{QOB}=\angle \mathrm{COB}$
Since POQ is a diameter of the circle, it is a straight line.
Therefore, $\angle \mathrm{POA}+\angle \mathrm{COA}+\angle \mathrm{COB}+\angle \mathrm{QOB}=180^{\circ}$
From equations (i) and (ii), it can be observed that
$2 \angle \mathrm{COA}+2 \angle \mathrm{COB}=180^{\circ}$
$\angle \mathrm{COA}+\angle \mathrm{COB}=90^{\circ}$
$\angle \mathrm{AOB}=90^{\circ}$

Question 10: Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Solution:

Let us consider a circle centred at point O . Let P be an external point from which two tangents PA and PB are drawn to the circle which are touching the circle at point A and B respectively and AB is the line segment, joining point of contacts A and B together such that it subtends $\angle A O B$ at centre O of the circle.
$\mathrm{OA}($ radius $) \perp \mathrm{PA}($ tangent $)$

CBSE Class 10th NCERT Solution: Mathematics

Therefore, $\angle \mathrm{OAP}=90^{\circ}$
Similarly, OB (radius) $\perp \mathrm{PB}$ (tangent)

$$
\angle \mathrm{OBP}=90^{\circ}
$$

In quadrilateral OAPB,

Sum of all interior angles $=360^{\circ}$

$$
\begin{array}{r}
\angle \mathrm{OAP}+\angle \mathrm{APB}+\angle \mathrm{PBO}+\angle \mathrm{BOA}=360^{\circ} \\
90^{\circ}+\angle \mathrm{APB}+90^{\circ}+\angle \mathrm{BOA}=360^{\circ} \\
\angle \mathrm{APB}+\angle \mathrm{BOA}=180^{\circ}
\end{array}
$$

Hence, it can be observed that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Question 11: Prove that the parallelogram circumscribing a circle is a rhombus.
Solution: Since ABCD is a parallelogram,
$A B=C D$
$B C=A D$

$\mathrm{DR}=\mathrm{DS}($ Tangents on the circle from point D$)$
$\mathrm{CR}=\mathrm{CQ}$ (Tangents on the circle from point C)
$\mathrm{BP}=\mathrm{BQ}($ Tangents on the circle from point B$)$
$\mathrm{AP}=\mathrm{AS}($ Tangents on the circle from point A$)$
Adding all these equations, we obtain
$\mathrm{DR}+\mathrm{CR}+\mathrm{BP}+\mathrm{AP}=\mathrm{DS}+\mathrm{CQ}+\mathrm{BQ}+\mathrm{AS}$
$(\mathrm{DR}+\mathrm{CR})+(\mathrm{BP}+\mathrm{AP})=(\mathrm{DS}+\mathrm{AS})+(\mathrm{CQ}+\mathrm{BQ})$
$\mathrm{CD}+\mathrm{AB}=\mathrm{AD}+\mathrm{BC}$
On putting the values of equations (1) and (2) in this equation, we obtain
$2 \mathrm{AB}=2 \mathrm{BC}$
$\mathrm{AB}=\mathrm{BC}$

Comparing equations (1), (2), and (3), we obtain
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$

Hence, ABCD is a rhombus.

Question 12: A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see given figure). Find the sides AB and AC .

Solution: Let the given circle touch the sides AB and AC of the triangle at point E and F respectively and the length of the line segment AF be x.

In $\triangle A B C$,
$\mathrm{CF}=\mathrm{CD}=6 \mathrm{~cm}$ (Tangents on the circle from point C)
$\mathrm{BE}=\mathrm{BD}=8 \mathrm{~cm}($ Tangents on the circle from point B$)$
$\mathrm{AE}=\mathrm{AF}=x($ Tangents on the circle from point A$)$

$$
\begin{aligned}
\mathrm{AB} & =\mathrm{AE}+\mathrm{EB}=x+8 \\
\mathrm{BC} & =\mathrm{BD}+\mathrm{DC}=8+6=14 \\
\mathrm{CA} & =\mathrm{CF}+\mathrm{FA}=6+x \\
2 s & =\mathrm{AB}+\mathrm{BC}+\mathrm{CA} \\
& =x+8+14+6+x \\
& =28+2 x \\
s & =14+x
\end{aligned}
$$

$$
\text { Area of } \begin{aligned}
\triangle A B C & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{(14+x)(14+x-14)(14+x-6-x)(14+x-8-x)} \\
& =4 \sqrt{3 x(14+x)}
\end{aligned}
$$

Area of $\triangle \mathrm{OBC}=\frac{1}{2} \times O D \times B C=\frac{1}{2} \times 4 \times 14=28$

Area of $\triangle \mathrm{OCA}=\frac{1}{2} \times O F \times A C=\frac{1}{2} \times 4 \times(6+x)=12+2 x$

Area of $\triangle \mathrm{OAB}=\frac{1}{2} \times O E \times A B=\frac{1}{2} \times 4 \times(8+x)=16+2 x$

Area of $\triangle \mathrm{ABC}=$ Area of $\triangle \mathrm{OBC}+$ Area of $\triangle \mathrm{OCA}+$ Area of $\triangle \mathrm{OAB}$

$$
\begin{aligned}
& 4 \sqrt{3 x(14+x)}=28+12+2 x+16+2 x \\
& 4 \sqrt{3 x(14+x)}=56+4 x \\
& \sqrt{3 x(14+x)}=14+x \\
& 3 x(14+x)=196+x^{2}+28 x \\
& 42 x+3 x^{2}=196+x^{2}+28 x \\
& 2 x^{2}+14 x-196=0 \\
& x^{2}+7 x-98=0 \\
& x^{2}+14 x-7 x-98=0 \\
& x(x+14)-7(x+14)=0
\end{aligned}
$$

CBSE Class 10th NCERT Solution: Mathematics

$$
\begin{aligned}
& (x+14)(x-7)=0 \\
& x=7,-14
\end{aligned}
$$

However, $x=-14$ is not possible as the length of the sides will be negative.
Therefore, $x=7$
Hence, $\mathrm{AB}=x+8=7+8=15 \mathrm{~cm}$
$\mathrm{CA}=6+x=6+7=13 \mathrm{~cm}$

Question 13: Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Solution:

Let $A B C D$ be a quadrilateral circumscribing a circle centred at O such that it touches the circle at point P, Q, R, S. Let us join the vertices of the quadrilateral $A B C D$ to the centre of the circle.

Consider $\Delta \mathrm{OAP}$ and $\triangle \mathrm{OAS}$,
$\mathrm{AP}=\mathrm{AS}$ (Tangents from the same point)
$\mathrm{OP}=\mathrm{OS}$ (Radii of the same circle)
$\mathrm{OA}=\mathrm{OA}($ Common side $)$
$\Delta \mathrm{OAP} \cong \Delta \mathrm{OAS}(\mathrm{SSS}$ congruence criterion)
Therefore, $\mathrm{A} \leftrightarrow \mathrm{A}, \mathrm{P} \leftrightarrow \mathrm{S}, \mathrm{O} \leftrightarrow \mathrm{O}$
And thus, $\angle \mathrm{POA}=\angle \mathrm{AOS}$
$\angle 1=\angle 8$

Similarly,
$\angle 2=\angle 3$

CBSE Class 10th NCERT Solution: Mathematics

$\angle 4=\angle 5$
$\angle 6=\angle 7$
$\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}$
$(\angle 1+\angle 8)+(\angle 2+\angle 3)+(\angle 4+\angle 5)+(\angle 6+\angle 7)=360^{\circ}$
$2 \angle 1+2 \angle 2+2 \angle 5+2 \angle 6=360^{\circ}$
$2(\angle 1+\angle 2)+2(\angle 5+\angle 6)=360^{\circ}$
$(\angle 1+\angle 2)+(\angle 5+\angle 6)=180^{\circ}$
$\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$

Similarly, we can prove that $\angle \mathrm{BOC}+\angle \mathrm{DOA}=180^{\circ}$
Hence, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Copyright ©Jagranjosh.com

All rights reserved. No part or the whole of this eBook may be copied, reproduced, stored in retrieval system or transmitted and/or cited anywhere in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the written permission of the copyright owner. If any misconduct comes in knowledge or brought in notice, strict action will be taken.

